1. We can represent binary numbers as sequences of propositions, where a proposition represents 1 if it is assigned T and 0 otherwise. For instance, p1p2 represents 10 in the interpretation $\{\mathrm{p} 1 \rightarrow \mathrm{~T}, \mathrm{p} 2 \rightarrow \mathrm{~F}\}$. Give a propositional formula expressing that a binary number r 1 r 2 r 3 is the sum of p 1 p 2 and q 1 q 2 (where $\mathrm{p} 1, \mathrm{p} 2, \mathrm{q} 1, \mathrm{q} 2, \mathrm{r} 1, \mathrm{r} 2, \mathrm{r} 3$ are propositions). [8M]

Solution: We assume that the least significant bit is indexed by the atom with the highest subscript (e.g. p 2 is the least significant bit of p 1 p 2). The addition of p 1 p 2 and q 1 q 2 can be formulated as the conjunction of following propositional statements. $\mathrm{r} 3 \leftrightarrow(\mathrm{p} 3=\mathrm{q} 3), \mathrm{r} 2 \leftrightarrow((\mathrm{p} 3 \wedge \mathrm{q} 3) \wedge(\mathrm{p} 2 \leftrightarrow q 2)) \vee$ $(\neg(p 3 \wedge q 3) \wedge(p 2=q 2)), r 1 \leftrightarrow((p 3 \wedge q 3) \wedge(q 2 \vee p 2))$
2. Consider the following transition system with the set of atomic propositions $\{a, b, c\}$: [12 M]

Indicate for each of the for each of the following LTL formula Φ i whether TS |= Фi
a. $\Phi 1=\mathrm{EGc}$
b. $\quad \Phi 2=\mathrm{GEc}$
c. $\Phi 3=\mathrm{X} \rightarrow \mathrm{c} \rightarrow \mathrm{XXc}$
d. Ga
e. $a U G(b \vee c)$
f. (XXb) U (b V c)
3. Let S be a (finite or infinite) set of propositional formulas. Propositional Logic S is said to be satisfiable if there is a valuation v under which every formula in S holds. S is said to be finitely satisfiable if every finite subset T of S is satisfiable. Note that if S is satisfiable, then it is, of course, finitely satisfiable.
A. Is the converse true? Prove your answer. [10M]
B. Prove the following lemma: Let S be finitely satisfiable. Let α be any formula. Then either S $\cup\{\alpha\}$ is finitely satisfiable or $S \cup\{\neg \alpha\}$ is finitely satisfiable.[10M]
4. Find all models of the formula $\psi=\neg(((p \rightarrow q) \leftrightarrow \neg p) \rightarrow p)[10 M]$
5. Prove that \wedge and \vee cannot define negation. [10M]

The proof is by contradiction. Suppose that \wedge and \vee can define negation, i.e., supose $-\phi \equiv \phi X .$. . $\mathrm{X} \phi$, for a finite number of applications of X , where X is either \wedge or V . Let v be an interpretation that assign T to ϕ, then $F=v(\neg \phi)=v(\phi X . . X \phi)$. Since X is either \wedge or v, for $v(\phi X \ldots X \phi)$ to be equal to F at least one of the operands must valuate to F. Since all operands are equal, and \wedge and V are associative, this requires that $\mathrm{v}(\phi)=\mathrm{F}$. But this contradicts the assumption that $\mathrm{v}(\phi)=$ T. Therefore our initial supposition that \wedge and \vee can define negation is false.
6. Prove the following theorem: $\{\psi 1, \ldots, \psi n\} \mid=\phi$ if and only if $\mid=(\psi 1 \wedge \cdots \wedge \psi n) \rightarrow \phi$ [10M]

