Birla Institute of Technology and Science, Pilani. Comprehensive Examination: CS/EEE/INSTR F215: Digital Design
Marks: 40
AY: 2017-18, Semester: I
Date: 05-December-2017, Tuesday
Time: 60 minutes
CLOSED BOOK (Part-A)
Pages: 02
BITS ID: \qquad NAME: \qquad SECTION: \qquad
Q1 The circuit below has three D flip-flops. Complete the timing diagram by filling in the waveforms for A, B, and C .

Q2 Design and realize a mealy machine using minimum numbers of T flip-flops and logic gates to detect a sequence of 101 in a given input stream. The output goes high on correct detection of last bit of the given sequence. Consider overlapping condition.

Q3 Draw the logic implementation of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$ for the following Verilog description. Label all the inputs, output and wires.

```
module gate (y, a, b, c, d)
input a, b, c, d;
outputy;
wire w1, w2, w3, w4, w5, w6;
nand n1(w2, a, b, w3);
xor x1 (w1, c, d);
nor n2(w3, a, b, c, w1);
assign w5=w1^w2;
or o1(w6, w1, w2, w4);
and A1(w4, w5, d, a);
assign y=w5 & w6;
end module
```

Q4 Find the simplest SOP form of the function, $\boldsymbol{F}=\boldsymbol{X} . \boldsymbol{Y}$, where

$$
X=A B \bar{C}+\bar{C} D+\bar{A} C \bar{D}+\bar{B} C \bar{D}
$$

$$
\boldsymbol{Y}=(A+B+\bar{C}+\bar{D})(\bar{B}+\bar{C}+D)(\bar{A}+C+\bar{D})
$$ B and C as selector lines. $f(A, B, C)=A \oplus B \oplus C$.

Birla Institute of Technology and Science, Pilani. Comprehensive Examination: CS/EEE/INSTR F215: Digital Design
Marks: 80 AY: 2017-18, Semester: I Date: 05-December-2017, Tuesday Time: 120 minutes OPEN BOOK (Part-B) Pages: 01
Q1 (a) Draw transistor level implementation of Boolean function \boldsymbol{Y} using CMOS logic family. Use minimum number of transistors and assume complementary inputs are available.

$$
\begin{equation*}
Y=\bar{A} D+\bar{B}(A+\stackrel{\grave{C}}{\boldsymbol{C}}) \tag{20}
\end{equation*}
$$

(b) Realize the Boolean function \boldsymbol{Z} using Transmission Gate logic (TG). Assume CMOS inverters and complementary inputs are available.

$$
Z=\bar{A}+B \bar{C}+\bar{B} C
$$

(c) Analyze and determine the Boolean expression implemented at output V_{o} using TTL logic as shown in figure 1 (a).

Fig 1(a): TTL Logic
Circuit

Q2 A digital system is to be designed with the following specifications: At power on the circuit is in some initial state $\boldsymbol{T}_{\boldsymbol{0}}$ and on next clock edge clears a 4-bit Register (\mathbf{R}), 4-bit counter (C) and a flip-flip (\mathbf{E}) and goes to next state $\boldsymbol{T}_{\mathbf{1}}$. In $\boldsymbol{T}_{\mathbf{1}}$ register \mathbf{R} is loaded with user defined 4-bit data and circuit moves to next state \boldsymbol{T}_{2}. In \boldsymbol{T}_{2} counter (\mathbf{C}) starts counting up. When the \mathbf{C} value is equal to \mathbf{R} value, \mathbf{E} is set on next clock pulse and circuit returns to \boldsymbol{T} o.
a. Design a ASM chart for the above problem
b. Design Controller using one-hot state assignment
c. Design the datapath required with all status and control signals

Q3 Design a circuit which has as 4-bit input \boldsymbol{W} [3:0] and 9-bit output \boldsymbol{X} [9:0] where both are treated as 2's complement numbers. Design a logic circuit to make \boldsymbol{X} equal to 6 times \boldsymbol{W} 's value. You may only use: • One 8-bit adder (with carry in and carry out) • Three NOT gates - Power and ground.

Q4 Design a circuit shown in fig 4 (a) which generates waveform at output \boldsymbol{Z}. The output \boldsymbol{Z} changes with every clock cycle in the following pattern shown in fig 4(b):

1101101010011011

Fig 4(b): Pattern

Fig 4(a): Digital Circuit
Design the circuit using only following components:

- One 4:1 MUX with active high enable. • One 2:4 Decoder with active high outputs and active high enable. • Any number of 2 -input and 4 -input OR gates. • Two 2-bit binary UP counter with asynchronous clear. Two 2-input AND gates.

