Birla Institute of Technology and Science, Pilani. Comprehensive Examination: CS/ECE/EEE/INSTR F215: Digital Design Marks: 90 AY: 2022-23, Semester: I Date: 1-Novenber-2022, Tuesday
 Time: 90 minutes
 CLOSED B00K
 Pages:01

Q1	A digital circuit takes an excess-3 code (MNOP, M: MSB, P: LSB) as input and display its equivalent decimal number (D) as output. A circuit is to be designed to detect decimal number $0,1,4,6,7$ and 8 from the input. Plot a k-map and identify the all the PI's and EPI's for the design. Write all the minimum SOP form(s).							[13]
Q2	The PI chart for a function F(A, B, C, D) is given below. Answer the following questions:							[13]
		3	4	7	9	10		
	PI							
	00--	X						
	-0-1	X			X		X	
	-01-	X				X	X	
	-11	X		X			X	
	1--1				X		X	
	1-1-					X	X	
	0-00							
	a. Provide all the Max terms for the function F in decimal format. b. Provide all the don't care terms of F in decimal format. c. Write all the minimized sum of product expression for F.							
Q3	A combinational circuit having 4-inputs (A, B, C, D, A: MSB, D: LSB) and 3-outputs F1, F2, F3 specified by the following functions $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(4,5,6) ; \quad \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,4,5) ; \quad \mathrm{F} 3(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,1,3,6)$ Draw the minimum size PLA programming table and mention the size of PLA.							[12]
Q4	A digital circuit takes a BCD number (PQRS, P: MSB, S: LSB) as input and display its equivalent decimal number on a seven segment display. The seven segments of the display are named as shown in the figure. The segment is ON if input is 1 and OFF if input is 0 . Design a digital logic circuit for a signal segment "a" of the seven segment display for the BCD input. Realize the obtained expression using only required numbers of 2 -input NAND gates. Only TRUE inputs are available for design.							[11]
Q5	Realize a full subtractor using only the required number of Half subtractors. Only TRUE inputs are available for design.							[10]
Q6	A digital circuit takes BCD number (ABCD, A: MSB, D: LSB) as the input and generates its equivalent excess-3 code (WXYX, W: MSB, Z: LSB) as the output. Design and realize the digital circuit using only minimum numbers of decoders and encoders of suitable size. Encoders and Decoders have active high output and active high enable.							[09]
Q7	Implement the following Boolean function using minimum numbers of 2 x 1 mux only. MUX have active high output and active high enable.$\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,2,4,7,8,9,10,11,13,15)$							[12]
Q8	Realize the following function using only required number of 2:4 decoders. $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{D}+\mathrm{ABC}^{\prime}+\mathrm{AD}+\mathrm{BD}+\mathrm{AC}+\mathrm{AD}^{\prime}$. Only true inputs are available. The 2:4 decoders have active high output and active high enable.							[10]

