	Birla Institute of Technology and Science, Pilani. Comprehensive Examination: CS/ECE/EEE/INSTR F215: Digital Design Marks: 40 AY: 2022-23, Semester: I Date: 21-December-2021, Wednesday Time: 60 minutes CLOSED BOOK Pages: 02				
Q1	Implement the function $F(A, B, C, D, E) = \Sigma m(1,2,5,6,8,11,12,15,17,18,21,22,24,27,28,31)$ using ONE 4:1 MUX and ONE XOR gate. Only true form of inputs is available.	[5]			
Q2	Draw the PAL Programming table for a PAL of suitable size to generate the 3 function outputs F1, F2, and F3 where F1(A,B,C)=Σm(0,1,3,5,7) F2(A,B,C)= Σm(2,3,6,7) and F3(A,B,C)= Σm(0,4,5,6).	[5]			
Q3	Implement the function $F(A, B, C, D) = \Sigma m(0,5,10,15)$ using only ONE 1:4 DMUX , and required numbers of half adders only. Inputs are available in true form only.	[5]			
Q4	Implement the function $F(A, B, C, D) = \Sigma m(3,4,5,6,9,10,11,12)$ using minimum numbers of transmission gates. Inputs are available in TRUE and COMPLIMENT form.	[5]			

esign a clocked sequential synchronous counter which counts 0→1→3→7→6→4→0, using only ositive edge triggered D-Flip-Flops.	[5]
	[5]
4-bit right shift register is initialized to a value 1000 for Q3, Q2, Q1, Q0. The input I is derived from 0, Q2 and Q3 as shown in the figure. What will be the value of Q3, Q2, Q1 and Q0 (IN BINARY ORMAT) for 5 clock pulses after initialization. $\frac{CLK \ Q3 \ Q2 \ Q1 \ Q0}{INT \ 1 \ 0 \ 0 \ 0}$ $\frac{CLK \ Q3 \ Q2 \ Q1 \ Q0}{II \ II $	[5]
circuit with T-FF and -FF is shown on the ght. Draw the raveforms for A and B or 5 clock pulses. nitially A=B=0 CLK 1 2 3 4 5	[5]
o, oi oi ci ci ci ci f gh vav or iit	Q2 and Q3 as shown in the figure. What will be the value of Q3, Q2, Q1 and Q0 (IN BINARY RMAT) for 5 clock pulses after initialization. $ \begin{array}{c} \hline CLK & Q3 & Q2 & Q1 & Q0 \\ \hline INT & 1 & 0 & 0 & 0 \\ \hline 1 & & & & & \\ \hline III & & & & & \\ \hline III & & & & & \\ \hline IV & & & & & \\ \hline V & & & & & \\ \hline \end{array} $ rrcuit with T-FF and F is shown on the fit. Draw the veforms for A and B 5 clock pulses. for A and B 6 clock pulses for A

Birla Institute of Technology and Science, Pilani.Comprehensive Examination:CS/ECE/EEE/INSTR F215:Digital DesignMarks:80AY: 2022-23, Semester:IDate: 21-December-2022, WednesdayTime:120 minutesOPEN BOOKPages:02

Q1	An AB flip-flop operates as follows: If $A = B = 0$, the flip-flop state $Q = 0$; if $A =$	[20]				
	0 and $B = 1$ the flip-flop state $Q = No$ change; if $A = 1$ and $B = 0$ the flip-flop					
	state $Q = Toggle$; and when both $A = B = 1$, the flip-flop state $Q = 1$.					
	(a) Construct the state table and derive the characteristic equation for this AB flip-flop.					
	(b) Convert JK flip flop to AB flip-flop. Realize the circuit using the JK flip-flop and 2-					
	input NAND gates only.					
	(c) Use the obtained AB flip-flop to design a 4-bit binary asynchronous mod-6 down					
	counter. Assume the initial state of the counter (WXYZ; W: MSB and Z: LSB) as 1111.					
	The AB flip-flop has synchronous and active low PRESET and CLEAR pin. Apart from					
	AB flip-flop, 2-input NAND gates are available for design. Use only required number of					
	NAND gates. Inputs are available in only TRUE form.					
	(d) Using required number of AB flip-flop(s), design a non-sequential counter which					
	counts as 0-6-5-3-2-1-0 and repeat. Apart from AB flip-flop, 2-input NOR gates are					
	available for design. Use only required number of NOR gates. Inputs are available in					
	only TRUE form. Assume counter outputs as					
	$Q_n \dots \dots Q_2, Q_1, Q_0$. Where Q_n : <i>MSB</i> and Q_0 : <i>LSB</i>					
Q2	A logic circuit realizes a function $F(A, B, C, D)$. The three inputs A, B , and C are the	[20]				
	binary representation of the digits 0 through 7 with A being the MSB . The input D is					
	an odd-parity bit; that is, the value of D is such that A , B , C , and D always contains an					
	odd number of 1's. The function F has value 1 if the input digit is a prime number. (A					
	number is prime if it is divisible only by itself and 1; 1 is considered to be prime, and 0					
	is not). Consider output as don't care for invalid inputs.					
	(a) Draw a Karnaugh map for <i>F</i> .					
	(b) Find all prime implicants and Essential prime implicants of <i>F</i> .					
	(c) Find all minimum sum of products for F. Realize the minimum SOP using only					
	required numbers of 2-input NAND gates.					
	(d) Find all prime implicants and essiential prime implicants of \overline{F} .					
	(e) Find all minimum product of sums for <i>F</i> . Realize the minimum POS using required					
	numbers of 2-input NOR gates only.					

Birla Institute of Technology and Science, Pilani. Comprehensive Examination: CS/ECE/EEE/INSTR F215: Digital Design Marks: 80 AY: 2022-23, Semester: I Date: 21-December-2022, Wednesday Time: 120 minutes OPEN BOOK Pages:02

	Time: 120 minutes OP	EN BOOK Pa	nges:02
Q3	A battery charging indicator system r	eeds to be designed using Moore sequent	tial [20]
	circuit. Input to the system is charging	g current measured through a 4-bit analog	to
	digital converter, whose output is available	ilable in a 4-bit register M. Register M can	be
	loaded into another 4-bit register A for	internal use of the system. Input also consi	sts
	of a switch S (if S=0, charging circuit is	off, else it is ON). Output of the system consi	sts
	of 3-bit register B (B= B2B1B0) connec	ted to a RGY LED. If B = 000, then LED is OFF	F, if
	B = 001 then LED glows green, if $B = 0$	10 then LED glows yellow, and if $B = 100$ th	en
	LED glows red. LED glows based on v	alue of charging current. If value of chargi	ng
	current is greater than Imax then LED	blinks red (indicating fault), else if chargi	ing
	current is less than Imin then LED glo	ws green steadily (indicating full charge), e	lse
	the LED glows yellow steadily (indicati	ng normal charging). A clock pulse at twice	of
	the frequency of blinking is available for	r the design. If S=0, then system should be rea	set
	immediately, with LED in OFF condition	n and detection of fault should be on prior	ity.
	Assume that value of Imax and Imin	s preloaded in registers as I_MAX and I_M	IIN
	respectively. Measured current value sh	nould be appropriately loaded in register A a	nd
	A can be compared with Imax and Imin	using two 4-bit comparators within same clo	ck.
	The desired outputs of comparators a	re denoted as X and Y (If A>Imax, X=1, and	l if
	A <imin, y="1).</th"><th></th><th></th></imin,>		
	(A) Draw the ASM chart for the above	e design with proper labels and neatness.	
	(B) Write state equations for the des	sign using one-hot coding.	
Q4	Design an octal to binary priority enco	der and realize it using minimum number 4	I:1 [20]
	MUX only. The designed priority enco	der must have active high outputs. Inputs a	are
	available only in True from.		
	Assume encoder inputs as (D7, D6, D5,	D4, D3, D2, D1, D0) D7 as MSB and D0 as LS	В
	Encoder outputs as (B2, B1, B0) B2 as M	ISB and B0 as LSB	