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2022-2023 Sem I Comprehensive Exam 27-12-2022
CS F222 Discr. Struc. for Comp. Sc. 10:00-13:00 hrs
Marks 80 Weightage 40% Mixed Mode, 180 min

Instructions: Assumptions must be clear and justified. Consistency is a must, conformance not enough.

No rough work inside answers. Write final answers in rectangles and

proofs below that in numbered steps.

0 ∈ N Rationals are Q and reals are R.

Q1 (a) Given x = +
√
2 (the positive square root of 2), consider the set

Sx = {min (jx− ⌊jx⌋, ⌈jx⌉ − jx) : ∀j ∈ N}.

Is it countable? Justify your answer in no more than one line. If more lines are seen it
will yield negative marks. [1+2=3]
Q1 (b) Given x as above, let Sx,n = {min (jx− ⌊jx⌋, ⌈jx⌉ − jx) : ∀j ∈ N, j ≤ n} and an =
|Sx,n|. Find the counting sequence an, and prove your solution. [5+5=10]
Q1 (c) Solve (a) and (b) with x = 1

7
instead of

√
2. [1+1+2+2=6]

Q2 (a) In how many ways can we select k objects from abundant supply of objects of n
types, with unrestricted (but upto k) repetitions of any type? Justify your answer. [10]
Q2 (b) From the (a) part, find a recurrence between the successive numbers in the counting
sequence ak = |select(types = 5, objects = k)| for n = 5 and k = 1, 2, 3, . . . . [5]
Q2 (c) Solve the recurrence and recover the original expression you had obtained in (a).
Write the solution in numbered steps with each step in the left column and its justification
in the right column. Clumsy and chaotic answers lead to forfeiture of rechecks. [10]

Q3. First 10 sequence numbers are given below of two sequences ⟨bn⟩, ⟨cn⟩ obtained in some
counting process. Find the recurrences and solve them to give a closed form expression each
for the nth sequence member of each sequence. [10+6=16]

n 1 2 3 4 5 6 7 8 9 10
bn 4 10 20 35 56 84 120 165 220 286
cn 1 3 4 7 11 18 29 47 76 123

Step marks for this question depend on neatness and consistency in your answers.



Q4 (a) In the classical model of rabbits multiplying on an island, each pair produces a new
pair every month after two months of age. It all begins with one just born pair put on the
island. The only twist in the tale is that after 3 months of age (i.e. after giving birth for
the second time) any pair can die with a probability 1− 2

m
where m is their age in months.

Find the minimum and maximum numbers of pairs on the island after 10 months, and their
probabilities. [10]
Q4 (b) You can get one of the 4 rewards, of values |1, 2, 4, 8 hundred, by choosing to scratch
one of the four scratch cards arrived on your smartphone on a pay app. But this is a two-step
process. You first input a number (your choice of a card). If that number is of the |100
card, you are done, you get |100. Otherwise, you are shown the |100 card, that you had
not chosen, and then you can switch or stick to your choice. Then you get the reward under
your final choice. What will be your strategy (always switch, always stick, or switch with
a probability)? Give a clear strategy and argue that it maximises the chance of getting the
highest amount on average. [10]



Solution
Q1 (a) It is patently countable because it is a sequence – a mapping from N.[1+2=3] Q1
(b) Since x is irrational, j ̸= k ⇔ min (jx− ⌊jx⌋, ⌈jx⌉ − jx) ̸= min (kx− ⌊kx⌋, ⌈kx⌉ − kx)
for j, k ∈ N because otherwise x would be a ratio of difference between two floor/ceilings and
j − k (rational). Thus, for each n, Sx,n will have n+1 unique irrationals, for j = 0, 1, . . . , n.
Thus, an = n+ 1. [5:proof of uniqueness, 4:n or n+ 1. 1:detecting n+ 1, not n]
Q1 (c) With x = 1

7
(rational), it is a finite periodic sequence given below.

j min (jx− ⌊jx⌋, ⌈jx⌉ − jx)
0 0
1 0.142857142857...
2 0.285714285714...
3 0.428571428571...
4 0.428571428571...
5 0.285714285714...
6 0.142857142857...
7 0

Basically, j ≡ k mod 7 or j ≡ |k−7| mod 7 will make the corresponding sequence numbers
equal. Thus there are exactly 4 members in the sequence, and an = min (n+ 1, 4). Finite
means countable, no need to state explicitly.
In marks distribution, exact marks are given (the table is not needed): [1+1+2+2=6]

Q2 (a) Selecting k objects from abundant supply of n types is like inserting partitions
between groups, groups not more than n, among k people:

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
One selection of 11 objects of 4 or more types.
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Like, the same selection with 7 types. 3 types are absent in this selection.

Thus, it is like selecting n− 1 positions among n+ k− 1 (the -1 is there because at least one
type as to be assigned). So the count is(

n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
.

Justifications for this may be written in many different ways. It is like allotting k votes
among n candidates, with possible zeros to some candidates. (If n < k then some candidates
must get 0 votes.) It is the number of monotonic (nondecreasing or nonincreasing) sequences
of length k among positive numbers a1 ≤ a2 ≤ · · · ≤ an. This one is more likely to be written
by our students. Another explanation is distributing n cookies to k kids, again some may
get 0 cookies. It is the number of unordered partitions of k in ≤ n parts.
Some students may prove by induction: double induction on n, k:



Base Both n = k = 1, obvious. Again n > 1, k = 1 then
(
n+1−1
n−1

)
=
(
n+1−1

1

)
= n; n = 1, k >

1 then
(
1+k−1
1−1

)
=
(
1+k−1

k

)
= 1.

Step n → n+ 1, k arbitrary By the I.H. for n types the count is
(
n+k−1
n−1

)
=
(
n+k−1

k

)
. Now

when we add a type, we have to add to the count all the ways of selecting j, 0 < j ≤ k
objects of the new type, with the remaining k−j objects of n types. Recall we assumed
the I.H. for arbitrary (or all) k. Thus the new count is(

n+ k − 1

k

)
+

k∑
j=1

(
n+ k − j − 1

k − j

)
=

k∑
j=0

(
n+ k − j − 1

k − j

)
=

k∑
j=1

(
n+ j − 1

j

)

and, using the known binomial identities, we get the RHS to be exactly
(
n+k
k+1

)
.

Step k → k + 1, n arbitrary For the same number of types, if we add one more object,
then each earlier selection can be extended with one more object each of one of the
types from the first type to the type of the first object in the selection ordered in non-
decreasing order of type indices. Thus the new count is

∑n
m=1

(
m+k−1
m−1

)
again yielding(

n+k
k+1

)
.

Q2 (b) The recurrence between the successive numbers in the counting sequence ak =
|select(types = 5, objects = k)| for n = 5 is obtained thus:

ak+1 =
(
k+5
k+1

)
= (k+5)!

(k+1)!4!
= k+5

k+1
× (k+4)!

k!4!
= k+5

k+1
ak.

Q2 (c) Solving ak+1 =
k+5
k+1

ak, a0 = 1, a1 = 5 by recursion thus:

ak+1 =
k + 5

k + 1
ak =

k + 5

k + 1
×k + 4

k
ak−1 = k times. . . =

k+1∏
j=1

j + 4

j
=

∏k+5
j=5 j

(k + 1)!
=

(k + 5)!

(k + 1)!4!
=

(
k + 5

k + 1

)
There can be other ways, but I have shown the simplest and self-explanatory one.

Q3.

bn = ⟨ 4 10 20 35 56 84 120 165 220 286 ⟩

One way to find a recurrence is trying ratios. Thus,

bn+1

bn
= ⟨ 5/2 2 7/4 8/5 3/2 10/7 11/8 4/3 13/10 ⟩

The minimal representation of the ratios is misleading, still the pattern is unmistakable:
bn+1

bn
= n+4

n
. So if you detect the similarity with 2(c) above, it is “select(types=4,objects=n)”.

Of course, without detecting that also, by the similar recursion, we get the formula. Another
method is trying differences: ∆b = 6 10 15 21 28 36 45 55 66; ∆2b = 4 5 6 7 8 9 10 11; then



it is constant 1. Thus, the third derivative is constant and the fourth zero: the sequence
must be cubic. Guess

bn =An3 +Bn2 + Cn+D

4 =A+B + C +D

10 =8A+ 4B + 2C +D

20 =27A+ 9B + 3C +D

35 =64A+ 16B + 4C +D

and, solving these: bn = n3

6
+ n2 + 11n

6
+ 1. If one further factorises this and recovers

bn =
(
n+3
3

)
well, one is a genius. But without that also, we should give credit. In fact,

if anyone does follow this approach, then one would most likely stop at the numericals:
bn = 0.167n3 + n2 + 1.83n+ 1 ... but this also should get full credit.
In the second sequence,

cn = ⟨ 1 3 4 7 11 18 29 47 76 123 ⟩

the recurrence is obvious: cn+2 = cn+1 + cn and c1 = 1, c2 = 3. Solving it like we do the

Fibonacci sequence and suchlike, we get α1,2 =
1±

√
5

2
and A = B = 1 and cn = φn +(1−φ)n

where φ = 1+
√
5

2
, the Golden Ratio. This being simpler, there are only 6 marks.

Q4 (a) Minimum pairs remain when every pair dies at the end of 3 months of age, producing
2 new pairs before dying. Modelling this figuratively, we get 16 pairs remaining and 11 dying
(three of them dying at the end of 10 months) Some fastidious textbook fans want to omit
just-borns from counts. But again, those insisting on not counting just-borns should also not
discount the just-dead, which are 3 in our case. So then the minimum for those fastidious
people not counting things happening at 00:01 hrs on the 11th day should answer minimum
as 12. What is unchanged is the minimum’s probability(
1
3

)11
= 5.64× 10−6.

Maximum pairs are F11 (because we begin F0 = 1, F1 = 1, F2 = 2 instead of F0 = 0) with
probability that no pair dies. That probability is the probability that no pair dies ever. For
that probability, note that Fn−1 pairs are born at the end of n months, each defying death
with probabilities 2

m
for m = 3, 4, ..., 10− n. Also include the exceptional first pair, defying

death from months 3 to 10. Thus the total becomes

10∏
n=3

(
2

n

) 10∏
n=2

(
10−n∏
m=3

(
2

m

))Fn−1

=
512

3628800
× 9.55× 10−12 = 1.347× 10−15

which is infinitesimally small, so no point in expecting to hit it in simulation probabilistically.

With Just-borns No Just-borns Add Now-dying Probab
Min 16 9 12 5.64× 10−6

Max 89 55 55 1.347× 10−15



Q4 (b) The probabilities of winning each reward, given the strategy, are enumerated in the
table below.

First Choice Second Choice Reward Probability
100 100 100 0.25
200 200 200 0.25
400 400 400 0.25
800 800 800 0.25
200 400 400 0.125
200 800 800 0.125
400 200 200 0.125
400 800 800 0.125
800 200 200 0.125
800 400 400 0.125

The strategies are separated by separator lines. Thus, except for the bad luch first choice of
100, the expected reward of no-switching strategy is 1400

4
= 350| and switching strategy is

2800
8

= 350|. Thus, no strategy is better than the other.


