1. Write a single statement describing the output of the following recursive procedure.
```
int fun(int x, int y)
```

```
{
    if (x == 0)
        return y;
    return fun(x - 1, x + y);
}
```


Fig 1
2. Write a recursive definition for the set of bit strings $S=\left\{0^{r} 1^{s} \mid r>=0, s>=0\right\}$.
3. Is $7^{\mathrm{m}}-1$ divisible by 6 for all positive integers m ? Why, or why not?
4. Prove that if n is a positive integer and $2^{\mathrm{n}}-1$ is prime, then n is prime. Use proof by contradiction.
5. Consider the set $S=\{a, b\}$. Draw the directed graph representation of each relation that can be defined on set S . Which of these relations are transitive?
6. Is it possible to define a relation which is neither symmetric nor anti-symmetric? If not, why not? If yes, how many such relations are possible on a set with n elements.
7. Let $\mathrm{f}(\mathrm{n}), \mathrm{n}>=0$, denote the Fibonacci sequence. Prove by induction that $1<(\mathrm{f}(\mathrm{n}+1) / \mathrm{f}(\mathrm{n}))<2$ for all $n>=3$. Assume $f_{0}=0$.
8. Consider the relation R_{n} as discussed in the class.
a) Define R_{n}.
b) Prove that R_{n} is an equivalent class.
c) Write down the sets resulting from the partition arising from the relation R_{4}, on the set of all bit strings.
9. Consider a 5×5 chequer board as shown in Fig 1.
a. Can we tile a 5×5 checker board obtained by removing a "black" square using right triominoes? Justify your answer by writing a proof.
b. Can we tile a 5×5 checker board obtained by removing a "white" square using right triominoes? Justify your answer by writing a proof.
10. Let S be a set of bit strings defined recursively by

Basis Step: $\lambda, 1 \varepsilon S$
Recursive Step: If $w \varepsilon S$, then $0 w \varepsilon S$ and $w 0 \varepsilon S$.
Prove that S is the set of all bit strings with no more than one 1.
11. Consider the relation R defined on $\mathrm{A}=\{1,2,3\}, \mathrm{R}=\{(1,2),(1,3),(2,1),(2,2),(3,1),(3,3)\}$
a) Compute a) $\left(\mathrm{R}^{-1}\right)^{2}$ and b) \bar{R}^{2}.
b) Compare the time complexities of computing the transitive closure of R by employing connectivity relation and by employing the Warshal's algorithm.

