Birla Institute of Technology \& Science, Pilani (Pilani Campus)
 CS F320 Foundations of Data Science

 Mid-semester Examination

 Mid-semester Examination}

1. Explain the different stages in the life-cycle of a data science project.
2. Derive Markov's and Chebyshev's inequalities. Using these results, state and derive the Law of Large Numbers (LLN).
3. Find the singular values of the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
\sqrt{2} & 2 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

and find the singular value decomposition of A .

$$
[2+4=6]
$$

4. a). Explain the different steps involved in principal component analysis (PCA), mathematically.
b). Explain PCA as a constrained optimization problem.
c). Discuss the number of principal components when the number of samples i.e., m are less than and greater than the number of features, n.
$[5+3+1=9]$
5. Explain the difference between the Frequentist and Bayesian approach using the 'sunrise problem'. Using the Bayesian approach, calculate the probability of sunrise, i.e p_{θ} for the 3 rd day, after observing the sun rise for the last 2 days. [Use uniform prior for $p(\theta)$]
6. Calculate the bias and variance of the estimator 'sample mean' i.e. $\hat{\mu}_{m}$ for a set of samples $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ drawn from a normal distribution,

$$
\mathcal{N}\left(x_{i} ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} .
$$

7. Discuss the maximum likelihood estimate (MLE) and maximum aposteriori point estimate (MAP) approaches for linear regression. [5]
8. Use the Lagrange multiplier method to find the global maximum and minimum values of the function $f(x, y)=x^{2}+2 y^{2}-4 y$ subject to the constraint $x^{2}+y^{2}=9$.
9. Explain the Naive Bayes classifier and how it is used for the spam filtering application.
10. a). Explain mathematically, a convex function and a convex optimization problem.
b). Under what condition a convex optimization problem gives a unique solution? Explain with the help of a graph. $[2+1=3]$
11. Explain the concept of a dual problem mathematically, and state the Karush-Kuhn Tucker conditions. [4]
12. Differentiate between gradient descent (GD), momentum accelerated GD, and Nesterov momentum based GD.
13. Define a spline mathematically, and find a linear spline for the data: $x=\{1,2,4,8\}, f(x)=\{3,7,21,73\}$. [3]
