Birla Institute of Technology & Science, Pilani (Pilani Campus) CS F320 Foundations of Data Science

Comprehensive Examination

Part-A (Closed book)

	Part-A (Clo	sed book)	
Date: 15/05/202	23 Weightage: 17.5%	Duration: 90 minutes	Max. marks: 35
	all the answers in the Part-A answer she lse, and fill in the blanks, you only need	· · ·	
1. Mark the foll	lowing statements True or False :		[11]
i). When the	he variance of the model is high, overfit	tting is less.	
ii). When the	he feature space is large, overfitting is l	ess.	
iii). As the variance	number of training examples increase e.	s, the model trained on that d	ata will have lower
iv). For high	h-dimensional objects, most of their vol	ume is near the surface.	
v). Images/	videos are examples of structured data		
vi). Maximu	um likelihood estimation (MLE) is base	d on the frequentist approach.	
,	ters estimates using a linear support ve VM (with Gaussian kernel) on the same	() 0	variance than non-
viii). The opt	timal solution for the optimization prob	lem in SVM is a globally optima	l solution.
ix). In the c	case of strong duality, the primal and de	ual solutions are different.	
x). The tim	ne-series generated from a random walk	is not stationary.	
xi). The tim	ne-series of IID noise has trend/seasona	lity component.	
2. Fill in the bla	anks:		[6]
i). A valid	kernel function satisfies the	condition.	
ii). The spli	itting criteria for a decision tree can be	based on impurity	•
	ion tree with high depth has		
iv). White n	noise is an example of (sta	ationary/ non-stationary) process	3.
v). As the n constant	number of dimensions increases, the volut t).	me of a cube (increa	ses/decreases/remains
vi). In comp	parison to non-linear SVM, linear SVM	has bias, and	variance.
3. State the prin showing all the	mal problem of SVM. Derive the dual pr he steps.	roblem of SVM using the Lagrang	ge multiplier method $[2+4=6]$
4. List the expr	ressions for the forward and backward p	propagation in a 2 layer neural ne	etwork. [3]
5. Find the VC	dimension of threshold function and an	n interval.	[3]
6. List out three	e problems which arise in the analysis of	of time series data.	[3]
	e steps involved in the dynamic time w at between two time-series, $X=[0, 2, 0]$,		$\begin{array}{c} \text{imum cost path for} \\ [2+1=3] \end{array}$

1

- * * * * * * * * -

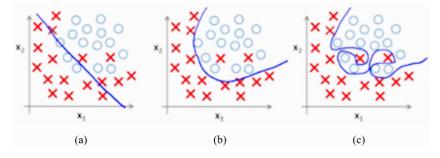
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (PILANI CAMPUS)

CS F320 Foundations of Data Science

Comprehensive Examination

Part-B (Open book)

Date: 15/05/2023	Weightage: 17.5%	Duration: 90 minutes	Max. marks: 35


Can the following Boolean function be represented by a single unit of a neural network? If so, find the weights and bias associated with the unit. Also, show it pictorially in a graph.
[3]

А	В	f(A,B)
1	1	0
0	0	0
1	0	1
0	1	0

2. Explain each of the following scenarios with respect to the fitting of the classifier.

[3]

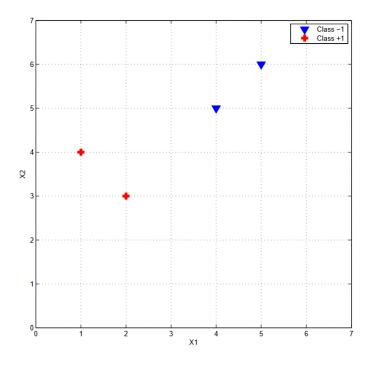
[2+1+1=4]

3. a). Can the XOR function (see table below) be classified using logistic regression? Justify your answer. [2]

b). Design a neural network using logistic units (as in logistic regression) to classify the XOR function $(A.\overline{B} + \overline{A}.B)$ as shown below. Also, show the network pictorially. [5]

А	В	f(A,B)
0	0	0
0	1	1
1	0	1
0	1	0

4. Calculate the principal components for the following data showing all the steps of the PCA. Also, show it in a graph. [4]


Х	Y
1	-1
0	1
-1	0

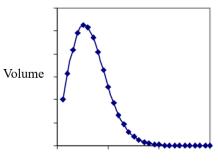
5. Find the maximum and minimum values of the function

a). f(x,y) = xy, subject to the constraint $4x^2 + y^2 = 8$. [4]

b). $f(x,y) = x^2 + 2y^2$, subject to the constraint $x^2 + y^2 \le 4$ [4]

6. Consider the following dataset shown in the plot.

a). Find the maximal margin decision boundary for SVM in this case, by using system of equations and geometrical interpretation of this dataset.


- b). List the support vectors, weight vector and bias
- c). Show the decision boundary and support vectors in the plot.
- 7. A model of social mobility of families posits three different social classes (strata), namely 'lower', 'middle', and 'upper'. The transitions between these classes (states) for a given family are governed by the following transition matrix

$$A = \begin{bmatrix} 1/2 & 1/2 & 0\\ 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 2/3 \end{bmatrix}$$

[3]

Find the stationary distribution of this Markov chain.

8. Consider the plot below

Number of dimensions

- a). This plot is a representation of which geometrical object?
- b). Write the formula for the volume of the object?
- c). Give proper justification for the change in volume with increasing dimension in this plot. [1+1+1=3]

 $\mathbf{3}$