50 Marks

[Note: Answer all the parts of each question together. There are two printed pages.]

Q1. What should be the form of Regular Grammar as per Chomsky Hierarchy of languages? Also, prove that corresponding to every regular grammar (as per Chomsky hierarchy) there exist a DFA. [3M, approx 5 mins]

Q2. Answer the following two parts with respect to Chomsky Normal Form (CNF): [2M+5M, approx 12 mins]

(a) Can you convert any CFG to CNF? Justify your answer.

(b) Use the following Induction Hypothesis to prove that the parse tree corresponding to every string derivation from a grammar in CNF has odd height.

"Let G = (V, Σ , R, S) be a CFG in Chomsky Normal Form. Then for any variable A \in (V- Σ), if A \rightleftharpoons w in K steps, then |w| = (k+1)/2".

Q3. Answer the following parts. S is the start symbol for each grammar given

[2x6 = 12M, approx 21 mins]

(a) The language	(b) The language	(c) The language	(d) Write a CFG for the language L
accepted by the	accepted by the	accepted by the	= {w $\in \{0, 1\}^*$ the length of w is
following grammar is G	following grammar	following grammar is	even and first half is all 0's}.
= {w ∈ (0U1)* }	is G = {w ∈ (aUb)*	G = {w ∈ (0U1)*	.
$S \rightarrow S_1 \mid S_2$	}	}	[Note that the above grammar can be written with only three production
$S_1 \rightarrow OS_1 \mid OE$	S → aA bB e	S → 00S 11S S00	rules. 1M will be deducted for every
$S_2 \rightarrow S_2 1 \mid E1$	A → aAA bS	S11 01S01 01S10	additional rule.]
$E \rightarrow 0E1 \mid e$	B → bBB aS	10S10 10S01 e	
 (e) Corresponding to the following Regular Expression, List all the strings of length less than 4 (i.e. <4) in lexicographical order: ((0U1)*1(0U01)*) 		(f) The number of states in the minimized DFA that accepts the language (over alphabet {a,b}) defined by the following regular expression are: (aUb)*(aUb)(aUb)*	

Q4. State whether the following are TRUE or FALSE. As stated, justify your answer. Just writing TRUE or FALSE will not
fetch any marks.[18M, approx 32 mins, Marks are distributed as per complexity of each part]

- a) $L = \{a^n b^m | n \le m \le 2n \text{ and } n \ge 0\}$ is a Context Free Language. If TRUE, draw a PDA which accepts L. If FALSE, prove it using pumping theorem.
- b) L = { aⁿb^mc^{n+m} | m and n are greater than or equal to one} is a regular language. If TRUE, draw a DFA which accepts L. If FALSE, prove it using pumping theorem.
- c) A DFA can be viewed as a PDA which never operates on its stack. If TRUE, show how the transitions of DFA can be converted to that of PDA. If FALSE, give a counter example to justify.
- d) Let regular expression R1 = (00*1)*1 and R2 = 1U0(0 U 10)*11. The language of R1 and R2 is same. If TRUE, make a most trivial NFA for R1. If FALSE, give another regular expression R3 which accepts the same language as that of R1.
- e) If L1 is a regular language and L1-L2 is also a regular language, then L2 should be a regular language. If TRUE, show that how DFA can be constructed for L1-L2. If FALSE, give a counter example.

Q5. Let $\Sigma = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \dots, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$, i.e. Σ contains all size 3 columns of 0's and 1's. A string of symbols in Σ gives three rows of 0's and 1's. Consider each row be a binary number and let:

For example,
$$\begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} \begin{bmatrix} 1\\1\\0 \end{bmatrix} \in L$$
, but $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = and \begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix} \begin{bmatrix} 1\\1\\0 \end{bmatrix} do not belong to L.$

Show that L is a regular language by making a DFA for it.

[**Hint**: An input word is read bit-triple by bit-triple, and the most significant bit first. You have to take care whether a possible carry-over from the next bit has occurred or not.]

[10M, approx 20 mins]