Birla Institute of Technology and Science, Pilani
 Mid Semester Exam, Closed Book, Oct 13, 2017
 Theory of Computation (CS F351)

60 Marks
Mins 90
[Note: Answer all the parts of each question together.]
Q1. Complete the following proofs:
a) To prove: Regular languages are closed under intersection operation.

Proof: Let L1 and L2 be two regular languages with corresponding DFA's M1 = $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M 2=\left(Q_{2}\right.$, $\left.\Sigma, \delta_{2}, s_{2}, F_{2}\right)$. If DFA M3 $=(Q, \Sigma, \delta, s, F)$ accept language $L 1 \cap L 2$, its tuples (in terms of that of $M 1$ and $M 2$) are.
$\mathrm{Q}=$ \qquad $\delta=$ \qquad $\mathrm{s}=$ \qquad ,
$\mathrm{F}=$ \qquad _.
b) Let $\mathrm{G} 1=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$ be a regular grammar with rules as per Chomsky hierarchy of languages. Let $\Sigma_{1} \subset \Sigma$ be some smaller alphabet. Over Σ_{1} consider another grammar $G 2=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ such that the language of $G 2$ is a subset of the language of G 1 , i.e. $\mathrm{L}(\mathrm{G} 2)=\mathrm{L}(\mathrm{G} 1) \cap \Sigma_{1}{ }^{*}$. Prove that G 2 is also a Regular grammar. [Hint: For every Regular grammar there exist a DFA.]
[5M + 5M = $\mathbf{1 0}$ Marks]
Q2. State whether the following are TRUE or FALSE with justification. Just writing TRUE/FALSE will not fetch any marks for you.
a) Let L 1 be a regular language contained in set $(\mathbf{a} \mathbf{U} \mathbf{b} \mathbf{U} \mathbf{c})^{*}$, i.e., regular language $\mathrm{L} 1 \subseteq(\mathbf{a} \mathbf{U} \mathbf{b} \mathbf{U} \mathbf{c})^{*}$. Also, let language L2 contain set of strings which are obtained by rearranging each string of L1 such that all a's appear first, then all b's, and then all c's. Language L2 will always be a CFL.
b) Let L1 be a regular language and N1 is an NFA which accepts L1. Let N2 be another NFA which is same as N1 except that final and non-final states are interchanged. The language of $\mathbf{N} \mathbf{2}$ will always be complement of $\mathbf{L 1}$.
c) If L1 is regular, then L1 is necessarily a CFL. To prove (or dis-prove) it use different types of automata done in the course.
d) The necessary and sufficient condition to prove that any two languages L1 and L2 are equal is L1' $\cap \operatorname{L2}=\varnothing$. Here L1' means complement of L1.
e) If L is a non-regular language and $L 1$ is a finite set of strings, then $L U L 1$ will always be non-regular. Assume here that the strings in L1 are not in L and \sum is same for both L and $L 1$.
[2M x 5 = 10M]
Q3. Answer the following parts sequentially with respect to $\operatorname{CFG} \mathbf{G}=(\{\mathbf{S}, \mathbf{T}, \mathbf{0}, \mathbf{1}\},\{\mathbf{0}, \mathbf{1}\}, \mathbf{R}, \mathbf{S})$, where R is given as:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{SS}|1 \mathrm{TT}| \mathrm{T} 1 \mathrm{~T}|\mathrm{TT}| \mathrm{e} \\
& \mathrm{~T} \rightarrow \text { OS }|\mathrm{SOS}| \mathrm{SO} \mid 0
\end{aligned}
$$

a) What is the language accepted by G? Do it very carefully as the next part is dependent on it.
b) Make a PDA (graphical representation) for language accepted by G. Here, do not directly convert the CFG to PDA using a theorem given in your text book. Rather, on the basis of answer of Q3(a) above, make a PDA.
c) Reduce the grammar G to Chomsky Normal Form such that the language is $L(G)-\{e\}$. Recall that CFG is in CNF if RHS of every production rule is either one terminal or two non-terminals.
d) Is G ambiguous? Is yes, give a smallest length string (and parse trees) which makes it ambiguous. If No, remove the null production rules from the grammar.

$$
[2 M+6 M+3 M+4 M=15 M]
$$

Q4. Let $L=\left\{w \# x \mid w\right.$ is a substring of x, where $\left.w, x \in(a \cup b)^{*}\right\}$. Is L a CFL? If YES, make a PDA for it. If NO, prove it using pumping theorem.

Q5. Construct a DFA for the following languages over $\sum=\{a, b\}$:
a) $L=\left\{w \in \sum^{*} \mid\right.$ number of $a^{\prime} s$ in $w \geq 2$ and number of $b^{\prime} s$ in $\left.w \leq 1\right\}$
b) $L=\left\{w \in(a \cup b)^{*} \mid\right.$ difference between number of a 's and b's in w is not divisible by 5$\}$

$$
[4 M+6 M=10 M]
$$

Q6. For $\Sigma=\{0,1,2,3\}$, construct a CFG for the language containing the set of strings that contain exactly two 1 's.

