8

 $\mathbf{2}$

 $\mathbf{5}$

 $\mathbf{4}$

Note: No marks will be given if the justification for your answer is not provided.

- 1. (a) Let L_1 be the regular language of the regular expression $a^*b^* + b^*a^*$. Give an example of a string $\{a, b\}$ which is not in L_1 .
 - (b) Design a DFA which accepts L_1 (You may consider any method).
- 2. Consider the following NFA (over the alphabet $\{a, b\}$)

- (a) What is the shortest string *not* accepted by this NFA?
- (b) Let L_1 denote the set of all strings not accepted by this NFA. Write a regular expression for L_1 .3
- (c) Convert the regular expression of Part (b) to an equivalent NFA.
- 3. Let L_1 and L_2 be regular languages over the alphabet Σ . Define the language $L_3 = \{\alpha\beta\gamma \mid \alpha\gamma \in L_1, \beta \in L_2\}$, that is, L_3 is obtained by inserting strings in L_2 inside strings in L_1 . Prove that L_3 is regular too.
- 4. Using Pumping Lemma prove that $L = \{w : w = w^R, w \in \{0, 1\}^*\}$ is not regular (This is the language of binary palindromes). Where w^R denotes the reverse of the string w. **10**
- 5. Let α be a string (over some alphabet Σ). By $\operatorname{odd}(\alpha)$, we refer to the string obtained by deleting symbols at all even positions of α . That is, if $\alpha = a_1 a_2 a_3 \ldots a_n$, then $\operatorname{odd}(\alpha) = a_1 a_3 a_5 \ldots a'_n$, where "n'" is n or n-1 according as whether n is odd or even. For a language $L \subseteq \Sigma^*$, define $\operatorname{odd}(L) = \{ odd(\alpha) \mid \alpha \in L \}$. Prove that if L is regular, then $\operatorname{odd}(L)$ is regular too. 10
- 6. (a) Give an example of a non-regular language L for which the asterate L^* is regular.
 - (b) Suppose that L_1 and L_2 are two languages (over the same alphabet) given to you such that both L_1 and L_1L_2 are regular. Prove or disprove: L_2 must be regular too. 6