BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

MM: 60

CS F351 (Theory of Computation) Mid Semester Exam, 2022 – 23 [Closed Book]

90 Minutes

<u>Note</u>: There are seven questions. Answer all parts of a question together. ε denotes empty string.

Q1 [10M]. Consider *F* a finite language over $\Sigma = \{0, 1\}$. Also, consider |F| = p and *M* be a Deterministic Finite Automaton with *s* states such that L(M) = F. Prove or disprove $s \ge \log_2(p+1)$.

Q2 [10M]. Let $\Sigma = \{0, 1\}$ and language $L = \{\gamma \in \Sigma^* \mid \gamma \text{ ends with } 11 \text{ however does not starts with } 11\}$.

- a) Construct a DFA which recognizes the language L with maximum seven states. Do not forget to mark the initial state, final states, and dead state (if any).
- b) Construct an NFA whose language is L with exactly one ε transition.

Q3 [5M]. Consider the language L over $\Sigma = \{0,1\}$ and the following language partial (L).

partial (L) = {y | $y \in \Sigma^*$, and there exists $z \in \Sigma^*$ such that |y| = |z| and $yz \in L$ }

If L is CFL, then partial (L) must also be CFL. Disprove this statement using the following two facts:

- a) Intersection of CFL and RL is a CFL.
- b) R = 00*11*00*1 is a regular expression.

Q4 [6+4 = 10M]. For the language P_1 over $\Sigma = \{0, 1, 2\}$

$$\mathbf{P}_1 = \{\mathbf{0}^{\mathbf{x}} (12)^{\mathbf{y}} \mathbf{x}, \mathbf{y} \ge \mathbf{0} \text{ and } \mathbf{x} \ge \mathbf{y}\}\$$

- a) Design a two-state PDA M for recognizing the language P₁ by empty stack. Assume that Z0 is already on the stack. Note that zero credits will be given to those students who will utilize more than 2 states.
- b) Consider the following incomplete CFG for P₁. Complete it by filling the four blanks. S is the start symbol, U, V are the variables. Don't use any extra variable.

S -> U V

November 05, 2022

U -> ____ | ____

V -> ____ | ____

Q5 [10M]. Consider the following CFG for the set of all non-null strings with equal number of a's and b's.

 $S \rightarrow aB|bA|SS|aC|bD, A \rightarrow a, B \rightarrow b, C \rightarrow SB, D \rightarrow SA.$

Execute the CYK algorithm (as discussed in the class) and identify whether the string **a b b b** belongs to the above grammar or not.

Q6[9M]. Consider the following CFG for generating the arithmetic expressions involving addition and multiplication operations. Here, A is the start symbol.

$$A \rightarrow a \mid A + A \mid A \times A$$

- (a) Design *all* the parse trees for the expression $a + a \times a + a$
- (b) Design an unambiguous grammar to generate the same language. Do not introduce any new variable (other than A). Assume all the operations to be evaluated from left to right.

Q7 [6M]. Over $\sum = \{a, b\}$, let $L1 = \{a^n b^n | n \ge 0\}$. Using pumping lemma for CFL's, the following proof claims to prove that L1 is not a CFL. Is the proof right? Justify your answer.

<u>Proof</u>: Suppose L1 is a CFL and p be the pumping length. Let $w = a^p b^p$. From pumping theorem we know that w can be divided in five parts uvxyz such that $uv^i xy^i z \in L1$ for all $i \ge 0$.

Let $v = a^k$ such that 0 < k < p. Now, $u = a^{p-k}$, $v = a^k$, x = e, y = e, and $z = b^p$.

Therefore, now for i = 0 the resulting string $w = a^{p-k} b^p \notin L1$.

Therefore, we can conclude that L1 is not a CFL.