BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI CS F351 (Theory of Computation) Mid Semester Exam, 2022-23 [Closed Book]

November 05, 2022
90 Minutes MM: 60
Note: There are seven questions. Answer all parts of a question together. ε denotes empty string.

Q1 [10M]. Consider F a finite language over $\Sigma=\{0,1\}$. Also, consider $|F|=p$ and M be a Deterministic Finite Automaton with s states such that $\mathrm{L}(M)=F$. Prove or disprove $s \geq \log _{2}(p+1)$.

Q2 [10M]. Let $\Sigma=\{0,1\}$ and language $\mathrm{L}=\left\{\gamma \in \Sigma^{*} \mid \gamma\right.$ ends with 11 however does not starts with 11$\}$.
a) Construct a DFA which recognizes the language L with maximum seven states. Do not forget to mark the initial state, final states, and dead state (if any).
b) Construct an NFA whose language is L with exactly one ε transition.

Q3 [5M]. Consider the language L over $\Sigma=\{0,1\}$ and the following language partial (L).

$$
\text { partial }(\mathrm{L})=\left\{y \mid y \in \Sigma^{*}, \text { and there exists } z \in \Sigma^{*} \text { such that }|y|=|z| \text { and } y z \in L\right\}
$$

If L is $C F L$, then partial (L) must also be CFL. Disprove this statement using the following two facts:
a) Intersection of CFL and RL is a CFL.
b) $\mathrm{R}=\mathbf{0 0} * \mathbf{1 1 * 0 0 * 1}$ is a regular expression.

Q4 $[\mathbf{6}+\mathbf{4}=\mathbf{1 0 M}]$. For the language P_{1} over $\Sigma=\{0,1,2\}$

$$
P_{1}=\left\{0^{x}(12)^{y} x, y \geqslant 0 \text { and } x \geqslant y\right\}
$$

a) Design a two-state PDA M for recognizing the language P_{1} by empty stack. Assume that $Z 0$ is already on the stack. Note that zero credits will be given to those students who will utilize more than 2 states.
b) Consider the following incomplete CFG for P_{1}. Complete it by filling the four blanks. S is the start symbol, U , V are the variables. Don't use any extra variable.
S -> U V
U -> \qquad
V -> \qquad
\qquad
Q5 [10M]. Consider the following CFG for the set of all non-null strings with equal number of a's and b's.
$\mathrm{S} \rightarrow \mathrm{aB}|\mathrm{bA}| \mathrm{SS}|\mathrm{aC}| \mathrm{bD}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{C} \rightarrow \mathrm{SB}, \mathrm{D} \rightarrow \mathrm{SA}$.
Execute the CYK algorithm (as discussed in the class) and identify whether the string a a b babbelongs to the above grammar or not.

Q6[9M]. Consider the following CFG for generating the arithmetic expressions involving addition and multiplication operations. Here, A is the start symbol.

$$
\mathrm{A} \rightarrow \mathrm{a}|\mathrm{~A}+\mathrm{A}| \mathrm{A} \times \mathrm{A}
$$

(a) Design all the parse trees for the expression $\mathrm{a}+\mathrm{a} \times \mathrm{a}+\mathrm{a}$
(b) Design an unambiguous grammar to generate the same language. Do not introduce any new variable (other than A). Assume all the operations to be evaluated from left to right.

Q7 [6M]. Over $\sum=\{a, b\}$, let $L 1=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Using pumping lemma for CFL's, the following proof claims to prove that L1 is not a CFL. Is the proof right? Justify your answer.
Proof: Suppose L1 is a CFL and p be the pumping length. Let $w=a^{p} b^{p}$. From pumping theorem we know that w can be divided in five parts uvxyz such that $u v^{i} x y^{i} z \in L 1$ for all $i \geq 0$.
Let $v=a^{k}$ such that $0<k<p$. Now, $u=a^{p-k}, v=a^{k}, x=e, y=e$, and $z=b^{p}$.
Therefore, now for $\mathrm{i}=0$ the resulting string $\mathrm{w}=\mathrm{a}^{\mathrm{p}-\mathrm{k}} \mathrm{b}^{\mathrm{p}} \notin \mathrm{L} 1$.
Therefore, we can conclude that L1 is not a CFL.

