BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI CS F351 (Theory of Computation) Comprehensive Exam, 2022-23
 PART-B [Open Book]

December 30, 2022
MM: 21

Q1 [5x3M = 15M]. Are the following languages decidable/un-decidable? If it is decidable, prove it. If not, prove by reduction using the language $A_{T M}=\{" M$ "," w " | " M " is a Turing Machine and " M " accepts "w" $\}$.
a) $\mathrm{L} 2=\left\{{ }^{\prime \prime} \mathrm{M}\right.$ " " $\mathrm{w}^{\prime \prime} \mid \mathrm{M}$ is Turing Machine, w is a string, and some Turing Machine M 1 exists such that w does not belong to $L(M) \cap L(M 1)\}$
b) $\mathrm{L} 3=\left\{{ }^{\prime \prime} \mathrm{M}\right.$ " $\mid \mathrm{M}$ is a Turing Machine that halts on all inputs and for some undecidable language $B, L(M)=L(B)\}$
c) $\mathrm{L} 4=\left\{{ }^{\prime \prime} \mathrm{M}\right.$ " $\mid \mathrm{M}$ is the Turing Machine and M is the only Turing Machine that accepts $\mathrm{L}(\mathrm{M})$ \}
d) $\mathrm{L} 5=\left\{{ }^{\prime \prime} \mathrm{M}\right.$ " $\mid \mathrm{M}$ is a Turing Machine and there exist a TM M1 such that the encodings of M and M 1 are not same but $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{M} 1)$ \}
e) $\mathrm{L} 6=\left\{{ }^{\text {" }} \mathrm{M}{ }^{\prime \prime} \mid \mathrm{M}\right.$ is a Turing Machine, and there exists two Turing Machines M 1 and M 2 such that $L(M) \subseteq L(M 1) U L(M 2)\}$

Q2 [6M]. Decide whether each of the following statements are True/False. If TRUE, prove formally. If FALSE, give a counter example. For giving the counter example, use the following languages only.
$L_{1}=\left\{a^{P} \mid P\right.$ is prime $\}$
$\mathrm{L}_{2}=\left\{a^{p}: p\right.$ is greater than 0 and is not prime $\}$
$\mathrm{L} 3=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
In addition to above, you can consider any number of finite languages.
a) The union of an infinite number of regular languages must be regular.
b) If L_{1} and L_{2} are not regular languages, then $L_{1} \cup L_{2}$ is not regular.
c) If L^{*} is regular, then L is regular.

