BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 CS F351 (Theory of Computation) Mid Semester Exam, 2023-24
 [Open Book]
 90 Minutes

October 13, 2023
MM: 60
Note: There are six questions. Answer all parts of a question together. ε denotes empty string.

Q1 [10M]. For two languages L_{1} and L_{2} over Σ, we define the quotient of L_{1} and L_{2} to be the language $L_{1} / L_{2}=$ $\left\{x \mid\right.$ for some $\left.y \in L_{2}, x y \in L_{1}\right\}$. Answer the following:
a) If $L_{1}=\{$ fish, dog, carrot $\}, L_{2}=\{$ rot, cheese $\}$, what is L_{1} / L_{2} ?
b) TRUE/FALSE: "In general, if L_{2} contains ε, then L_{1} / L_{2} will contain L_{1} ". Justify in one statement.
c) TRUE/FALSE: "In general, if $L_{2}=P \cup Q$, then $L_{1} / L_{2}=\left(L_{1} / P\right) \cup\left(L_{2} / Q\right)$ ". Justify in one statement.
d) TRUE/FALSE: "In general, if $L_{1}=P \cup Q$, then $L_{1} / L_{2}=\left(P / L_{2}\right) \cup\left(Q / L_{2}\right)$ ". Justify in one statement.
e) Prove that regular languages are closed under quotient operation.

Q2 [10M]. Consider the following three CFG's, G_{1} to G_{3}, and answer the questions that follow:

$$
\begin{aligned}
& G_{1}=\left(\left\{S_{1}, A, a, b\right\},\{a, b\},\left\{S_{1}->\text { aabA | Aba , } A \rightarrow a A|b A| a|b| \varepsilon\right\}, S_{1}\right) \\
& G_{2}=(\{S, Y, a, b\},\{a, b\},\{S \rightarrow a S b|b Y| Y a, Y \rightarrow b Y|a Y| \varepsilon\}, S) \\
& \mathbf{G}_{3}=\left(\left\{S_{2}, A, a, b\right\},\{a, b\},\left\{S_{2}->A a a A, A->b A \mid \varepsilon\right\}, S_{2}\right)
\end{aligned}
$$

a) What is the language of $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3} ?
b) Write "simplest possible" CFG_{4} such that $\mathrm{L}\left(\mathrm{G}_{4}\right)$ is the complement of $\mathrm{L}\left(\mathrm{G}_{2}\right)$?
c) Write a CFG G_{5} such that $\mathrm{L}\left(\mathrm{G}_{5}\right)=\mathrm{L}\left(\mathrm{G}_{1}\right) \cup \mathrm{L}\left(\mathrm{G}_{3}\right)^{*}$. Writing CFG G_{5} should depict some algorithmic process for which understanding the language is not required.

Q3 [12M]. Answer the following:
a) Prove/Disprove: "If L is a non-regular language, then L^{*} must also be a non-regular language".
b) A CFG is known as strongly right linear if all the rules in CFG are of the form $P \rightarrow a Q$ or $P \rightarrow \in$, where P, Q are variables and a is a terminal symbol. Prove/disprove: " α is the language of strongly right linear grammar if and only if α is a regular language".
c) Consider a language L over an alphabet \sum. String x is known as a prefix of string y if $y=x z$ for some string z. For e.g., the prefixes of $a b b a b$ are $a, a b, a b b, a b b a, a b b a b$. By using L, it is possible to create the language dupcPre (L) by duplicating the prefixes of strings in L.
$\operatorname{dupcPre}(L)=\{x y \mid y \in L$, and x is a prefix of $y\}$.
Prove/Disprove: If L is regular, then dupcPre (L) must also be regular.

Q4 [8M]. Consider the following CFG $G=(\{S, A, a, b\},\{a, b\}, R, S)$, where R is given as:

$$
\begin{aligned}
& S->a S|b A| b \\
& A->a A|b S| \varepsilon
\end{aligned}
$$

Also, it is given that G is a regular language. Convert G to NFA and NFA to DFA. Making of NFA and corresponding DFA should depict some algorithmic process for which understanding the language is not required.

Q5 [10M]. Over $\sum=\{0,1\}$, let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has even number of 1 's $\}$.
a) Make a DFA with two states accepting L.
b) Using pumping theorem, consider the following proof which proves L is not a regular language:

Proof: Let string $w=0110$ which satisfies the condition $|w| \geq p$, where p is the pumping length. We can break string w into three parts x, y, and z, such that $w=x y z$, as follows: $x=0, y=1, z=10$. This satisfies the condition $|y|>0$, and $|x y| \leq p$. However, now $x y^{2} z \notin L$. Hence, L is not a regular language.
What is wrong with the above proof? Your answer should be complete.

Q6 [10M]. Over $\Sigma=\left\{(\right.$,$\left.) , int, +{ }^{*}\right\}$, let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a legal arithmetic expression $\}$. For example, the following are two legal arithmetic expressions.

- int + int * int
- ((int + int) * (int + int)) + (int)

Assuming \$ as the bottom marker symbol of the stack and \# as the end marker symbol of the input string, following is a deterministic PDA (DPDA) for L with four states. The PDA has few missing transitions. Complete it. Redraw the complete DPDA (with four states) for L.

