- 1. Consider the regular expression $r = aa(a|b)c^*(d|e)^*$.
 - (a) Show a step by step construction of an NFA for the regular expression using Thompson construction method. Create DFAs from the basis. Next, we are expecting 5 NFAs for 5 important sub-expressions, constructed mechanically using inductive steps, without skipping any step. Next, show the final NFA. You MUST name the states as 0, 1, 2, 3, ... in the final NFA.
 - (b) Assign numbers starting from 0 to each state you create right from the basis. What is the last number after completing 5 subexpressions? Explain why it is 2|r|?
- 2. Answer the following:
 - (a) Write a set of production rules that generates the language $L(G) = \{a^n c b^m | n, m \ge 0\}$. Use the start symbol to be S. From these rules, explain the type of the grammar.
 - (b) For the set $L(G) = \{a^m, b^n, c^p, d^q | m, n, p, q \ge 1\}$, write a set of production rules. Using these rules, explain why it is regular. Draw its DFA.
 - (c) Now if m == n and p == q, what will be the type of this grammar? Write production rules for this grammar $R(G) = \{a^m, b^m, c^p, d^p | m, p \ge 1\}$).
 - (d) Consider two languages $L_1 = \{a^n b^n c^m | n, m > 0\}$ and $L_2 = \{a^n b^m c^m | n, m > 0\}$. Write production rules for L(1) and L(2) and comment on their language types. Explain what is the type of the language $L_3 = L_1 \cap L_2$?
- 3. Consider the production rules $P = \{1.E \rightarrow E+T, 2.E \rightarrow T, 3.T \rightarrow TF, 4.T \rightarrow F, 5.F \rightarrow F*, 6.F \rightarrow a, 7.F \rightarrow b\}$ for the grammar $G = \langle \{E, T, F\}, \{a, b, +, *\}, P, E \rangle$
 - (a) Compute the FIRST and FOLLOW sets of all NTs.
 - (b) Compute the set of LR(0) items I_0, I_1, \cdots
 - (c) Construct the SLR parsing table
 - (d) Identify the states where the shift and reduce conflicts have been resolved during SLR parsing table construction.

Stack Content	Action taken
\$(I0)	shift?
\$(I0)a(I?)	$R(6) \ F \to a$
\$(I0)F(I?)	$\mathbf{R}(4) \ T \to F$
\$(I0)??	accept

(e) Show every step of the SLR parser movements for the string **a+ab*** strictly in the following manner:

The first few steps have been shown above, as a guidance that you must follow.

4. Consider the following production rules of a grammar $A \to \alpha | \beta$. Let us define a new function $FIRST^+(A \to \alpha) = FIRST(\alpha) \cup FOLLOW(A)$ if $\alpha \Rightarrow^* \epsilon$, otherwise $FIRST^+(A \to \alpha) = FIRST(\alpha)$.

Prove that for both the cases (i) neither $\alpha, \beta \Rightarrow^* \epsilon$ and (ii) only one of α or $\beta, \Rightarrow^* \epsilon$ IF $(FIRST(\alpha) \cap FIRST(\beta) = \emptyset)$ THEN, $FIRST(\beta) \cap FOLLOW(A) = \emptyset$ implies $FIRST^+(A \rightarrow \alpha) \cap FIRST^+(A \rightarrow \beta) = \emptyset$ and vice versa. 6

1

9 5

10

 $\mathbf{7}$