BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI (RAJASTHAN)
 Second Semester, 2021-2022

60 Marks (30\% Weight)
Mid-Semester Test
Open Book
Course Number: CS F364
Date : March 09, 2022
Course Title: Design \& Analysis of Algorithms
Time $\quad:$ 09.00 AM - 10.30 AM
Note: There are four questions in all. Please answer all parts of a question in sequence and in continuation.

Q1. Solve the following:
1.1 Find Omega (Ω) notation of function $f(n)=2 n^{2}+6 n^{*} \log _{2}(n)+6 n$.
1.2 Find upper bound of the recurrence $T(n)=T(n / 2)+n$.
1.3 Find upper bound of the recurrence $T(n)=T(n / 2)+1$.
1.4 Using greedy method, trace the graph [(a, b, 3), ($a, d, 7$), (b, c, 4), (b, d, 2), (c, d, 5), ($c, e, 6$), ($d, e, 4$)], (where the ordered-triplet (x, y, N) means the cost or weight along the directed edge (x, y) is N) to get shortest path from vertex 'a'

Character	Frequency
C	260
E	240
T	116
B	60
V	44
S	20
U	18
N	16
R	10

Table Q2.1 to all other vertices.
1.5 Prove that $100 n+5$ is $O\left(n^{2}\right)$ and specify the values of the constant C and the n_{0}.

Marks Q1 [3 x 5 = 15]

Q2. Solve the following:
2.1 Find Huffman codes for the frequency table given in the Table Q2.1.
2.2 Using Dynamic Programming, solve the Knapsack problem, given: $n=3$, $\left\{W_{1}, W_{2}, W_{3}\right\}=\{1,2,2\},\left\{P_{1}, P_{2}, P_{3}\right\}=\{18,16,6\}$ and Capacity=4.
2.3 Solve the matrix multiplication as given in the Table Q2.3 using Strassen's algorithm.
$\left\lfloor\begin{array}{llll}1 & 3 & 2 & 5 \\ 1 & 0 & 1 & 4 \\ 4 & 1 & 0 & 1 \\ 5 & 2 & 3 & 1\end{array}\right\rfloor \times\left[\begin{array}{llll}1 & 1 & 1 & 2 \\ 2 & 2 & 1 & 2 \\ 3 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$

Table Q2.3
Marks Q2 [5 x 3 = 15]

Q3. Given the transport network as [(S, a, 4,3), (S,b, 7,2), (a,c, 5,2), (a,D, 3,1), (b, d, 2, 1), (b, D, 1, 1), (c, D, 2, 2), ($d, D, 1,1$)], where $S=$ Source node, $D=\operatorname{Sink}$ (Destination) node, and a, b, c, and d are four nodes, and the ordered-tuple (x, y, m, f) denotes that for the directed edge (x, y) the maximum capacity is m but flow is f. Find two different maximal flows and value of each of these flows.

$$
\text { Marks Q3 [7.5 + } 7.5 \text { = 15] }
$$

Q4. A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S . For instance, if S is $5,15,-30,10,-5,40,10$, then $15,-30,10$ is a contiguous subsequence but $5,15,40$ is not. Give a lineartime Dynamic-Programming algorithm (along with the recursions used and time-complexity derivation) for the following task:
Input: A list of integers, $a_{1}, a_{2}, \ldots, a_{n}$.
Output: The contiguous subsequence of maximum sum (and also the sum). A subsequence of length zero has sum zero.
For the preceding example, the answer would be $10,-5,40,10$, with a sum of 55 . Show the working of your algorithm for the above example.

