BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJASTHAN) Second Semester, 2021-2022

60 Marks (30% Weight)		Mid-Semester Test	Open Book		
Course Number: CS F364		Course Title: Design & Analysis of Algorithm			
Date	: March 09, 2022	Time	: 09.00 AM - 10.30 AM		

Note: There are four questions in all. Please answer all parts of a question in sequence and in continuation.

Q1. Solve the following:

Q2. Solve the following:

Strassen's algorithm.

- **1.1** Find Omega (Ω) notation of function $f(n)=2n^2+6n * \log_2(n)+6n$.
- **1.2** Find upper bound of the recurrence T(n) = T(n/2) + n.
- **1.3** Find upper bound of the recurrence T(n) = T(n/2) + 1.
- 1.4 Using greedy method, trace the graph [(a, b, 3), (a, d, 7), (b, c, 4), (b, d, 2), (c, d, 5), (c, e, 6), (d, e, 4)], (where the ordered-triplet (x, y, N) means the cost or weight along the directed edge (x, y) is N) to get shortest path from vertex 'a' to all other vertices.
- **1.5** Prove that 100n + 5 is $O(n^2)$ and specify the values of the constant C and the n_0 .

2.1 Find Huffman codes for the frequency table given in the Table Q2.1.2.2 Using Dynamic Programming, solve the Knapsack problem, given: n=3,

{W₁, W₂, W₃}={1, 2, 2}, {P₁, P₂, P₃}={18, 16, 6} and Capacity=4. **2.3** Solve the matrix multiplication as given in the Table Q2.3 using

Character	Frequency
С	260
E	240
Т	116
В	60
V	44
S	20
U	18
Ν	16
R	10

Table Q2.1

Marks Q	1[3	x 5 =	15]
---------	-----	-------	-----

1	3	2	5	1	1	1	2 2 1 1
1	0	1	4	2	2	1	2
4	0 1	1 0	1	3	1	2	1
5	2	3	1	1	1	1	1

Table Q2.3

```
Marks Q2 [5 x 3 = 15]
```

Q3. Given the transport network as [(S,a, 4,3), (S,b, 7,2), (a,c, 5,2), (a,D, 3,1), (b, d, 2, 1), (b, D, 1, 1), (c, D, 2, 2), (d, D, 1,1)], where S = Source node, D = Sink (Destination) node, and a, b, c, and d are four nodes, and the ordered-tuple (x, y, m, f) denotes that for the directed edge (x, y) the maximum capacity is m but flow is f. Find two different maximal flows and value of each of these flows.

Marks Q3 [7.5 + 7.5 = 15]

Q4. A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S. For instance, if S is 5, 15, -30, 10, -5, 40, 10, then 15, -30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give a linear-time *Dynamic-Programming* algorithm (along with the recursions used and time-complexity derivation) for the following task:

Input: A list of integers, $a_1, a_2, ..., a_n$.

Output: The contiguous subsequence of maximum sum (and also the sum). A subsequence of length zero has sum zero.

For the preceding example, the answer would be 10, -5, 40, 10, with a sum of 55. Show the working of your algorithm for the above example.