Design and Analysis of Algorithms (CS F364) Comprehensive Examination (Second Semester, 2023)

There are 6 questions in all and total marks are $12+12+16+16+16+16=88$. The questions are arranged in increasing order of difficulty. Please show all steps in computations or proofs with complete derivation of complexity results. This is an open book exam. You can use any printed or handwritten material restricted to the text book, reference books, and lecture notes. Calculators are allowed. Time: 180 minutes.

1. Using extended Euclid's algorithm for GCD find the gcd (677801, 939871), and also integers x and y such that $(677801,939871)=677801 x+939871 y$, showing all the steps involved.
2. By making use of efficient algorithms, find the last three (least significant) digits in the decimal expansion of

$$
20232023202320232023^{20232023202320232023} .
$$

3. Design an algorithm that on input $n \in \mathbb{N}$ computes the decimal representation of 2^{n} in $O\left(n^{\log _{2} 3}\right)$ time. (Decimal representation examples: $2^{1}=2,2^{5}=$ $32,2^{0}=1$.)
4. Consider the following factor 2 approximation algorithm for the cardinality vertex cover problem: Find a depth first search tree in the given graph G, and output the set, say S, of all the nonleaf vertices of this tree. Prove that S is indeed a vertex cover for G and

$$
|S| \leq 2 \cdot \mathrm{OPT}
$$

where OPT is the size of the minimum cardinality vertex cover of G.
5. Let D_{n} be a probability distribution over $\{0,1\}^{n} . D_{n}$ is called \mathbf{P}-computable if there exists a polynomial-time DTM that, given input $x \in\{0,1\}^{n}$, can compute the cumulative probability $\mu_{D_{n}}(x)$, where

$$
\mu_{D_{n}}(x)=\sum_{y \in\{0,1\}^{n} \mid y \leq x} \operatorname{Pr}_{D_{n}}[y] .
$$

Here $\operatorname{Pr}_{D_{n}}[y]$ denotes the probability assigned to string y according to the probability distribution D_{n} and $y \leq x$ means y either precedes x in lexicographic order or is equal to x.

Let $G_{n, p}$ be the probability distribution over n-vertex graphs ($n \times n$ binary adjacency matrices) where each edge is chosen to appear in the graph independently with probability p. Prove that $G_{n, p}$ is \mathbf{P}-computable.
6. For an edge-weighted undirected graph $G=(V, E, w)$, let the weight function be $w: E \rightarrow \mathbb{N}$ and let the weight bound be $W \in \mathbb{N}$. We define the language MAX-CUT as follows:

$$
\begin{aligned}
& \text { MAX-CUT } \\
& =\left\{((V, E, w), W) \mid \exists \text { a set } S \subseteq V \text { such that } \sum_{\{u, v\} \in E, u \in S, v \notin S} w(u, v) \geq W\right\} .
\end{aligned}
$$

