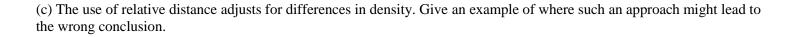
IDNO	NAMI	


BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

Second Semester 2021-22 COMPREHENSIVE EXAMINATION PART A (CLOSED BOOK)

CORPUSED BOOK)							
		CS F415 Data Mining					
Date: 12-05-2022 (FN)		Ouration : 90 minutes	Max.N	Marks : 40 (20%	<u>(o)</u>		
Write your answers only in the space provided.							
1. Underfitting occurs wh				[1]			
	High and Generalization						
	High and Generalization						
(C) Training Error is	Low and Generalization I	Error is High.					
(D) Training Error is	Low and Generalization I	Error is Low.					
2. Overfitting occurs whe				[1]			
(A) Training Error is	High and Generalization	Error is High.					
(B) Training Error is High and Generalization Error is Low.							
	Low and Generalization I						
			_				
(D) Training Error is Low and Generalization Error is Low. 3. Which of the following is a fundamental difference between bagging and boosting? [1]							
		oosting is used with unsupervised cluster	∟_ erino	[+]			
		instances. Boosting gives equal weight		instances			
		previously built models into account when			th		
			ich bullding a	new moder. wi	uı		
	boosting each new model is built based upon the results of previous models. (D) Boosting is used for supervised learning. Bagging is used with unsupervised clustering.						
				NG.	[1]		
	men we are interested in in	nding all possible interactions among a	set of autibute		[1]		
(A) decision tree		(B) association rules					
(C) K-Means algorith		(D) Rule based learning	1.1	1	F13		
5. I raining Error of a mod	del can be reduced by	(increasing/decreasing) th	ne model comp	olexity.	[1]		
6. Assume that we have a	dataset containing inform	ation about 200 individuals. One hundr	red of these inc	lividuals have			
purchased life insurar	nce. A supervised data mi	ning session has discovered the followi	ng rule:				
	redit card insurance = yes						
THEN life insura	•						
Rule Accuracy:							
Rule Coverage:							
		e = no have credit card insurance and a	re less than 30	vears old?	[1]		
(A) 63	is in the class the mistrance	te – no have creat eard insurance and as	re ress than 50	years ora.	[1]		
(B) 70							
(C) 30							
(D) 27							
* *							
Use these tables to answ							
Single Item Sets	Number of Items	Two Item Sets		Number			
Magazine Promo = Yes	1/			of Items			
Watch Promo = No	6	Magazine Promo = Yes & Watch Pr	romo = No	4			
Life Ins Promo = Yes	5	Magazine Promo = Yes & Life Ins I		5			
Life Ins Promo = No	5	Magazine Promo = Yes & Card Insu		5			
Card Insurance = No	8	Watch Promo = No & Card Insurance		5			
Sex = Male	6	waten 110mo = 140 & Card msdrand	<u>cc = 140</u>	J			
	7. One two-item set rule that can be generated from the tables above is:						
If Magazine Promo = Yes Then Life Ins promo = Yes							
The confidence for the				[1]			
(A) 5/7	ns ruic is.			[1]			
* *							
(B) 5/12							
(C) 7/12							
(D) 1							
8. Based on the two-item set table, which of the following is <i>not</i> a possible two-item set rule? [1]							
(A) IF Life Ins Promo = Yes THEN Magazine Promo = Yes							
(B) IF Watch Promo = No THEN Magazine Promo = Yes							

9. If you wanted to	Promo = No THEN Card Insurance = No compare the genetic makeup of two organisms of the same species, e.g., two human being distance, the Jaccard coefficient, or a different measure of similarity or distance? Explain. (
	re > 99:9% of the same genes.)	[2]
	of points that are uniformly distributed on the interval [0,1]. Is the statistical notion of an or	utlier as an
infrequently obser	rved value meaningful for this data?	[2]
11. Define Outlier	with respect to	[2*3=6]
11. Define Outher	with respect to	[2:3-0]
A. Density		
B. Probability		
B. Frobability	y	
C. Proximity		
12 F 14- 6-1	Descript Thomas	F1 \(\dagger A \)
12. Expand the fol A. DBSCAN	llowing Terms:	[1*4=4]
B. CURE		
C. ROCK		
D. BIRCH		
	relative distance) K-means scheme for outlier detection described in Section 10.5 and the action	
figure, Figure 10.1 (a) The points at the	10. he bottom of the compact cluster shown in Figure 10.10 have a somewhat higher outlier sco	[2+2+2=6] ore than those
	f the compact cluster. Why?	
	we choose the number of clusters to be much larger, e.g., 10. Would the proposed technique g the most extreme outlier at the top of the figure? Why or why not?	still be

(C) IF Card Insurance = No THEN Magazine Promo = Yes

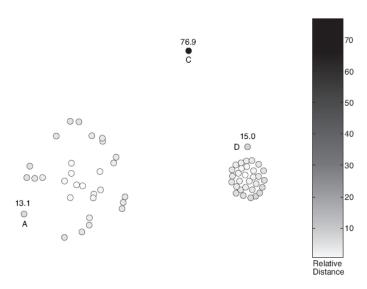


Figure 10.10. Relative distance of points from closest centroid.

14. Consider the following four faces shown in Figure 1. Again, darkness or number of dots represents density. Lines are used only to distinguish regions and do not represent points. [2+2+2=6]

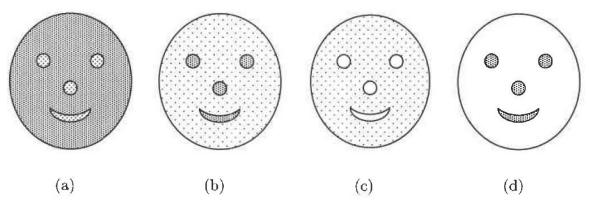


Figure 1

(a) For each figure, could you use single link to find the patterns represented by the nose, eyes, and mouth? Explain.

(b) For each figure, could y	ou use K-means to find the patterns represented by the nose, eyes) and mou	th? Explain.
(c) What limitation does clu	ustering have in detecting all the patterns formed by the points in Figure 1 (o	>)?
in association rules that hav	ore interested in association rules with high confidence. However, often we a confidence of 100%. Why? Then specifically explain why association rung (i.e., what might they indicate)?	
16. What are two other nam	nes by which following terms are identified?	[1+1=2]
A. Training Error		
B. Outlier Detection		
_	g often generates a large number of rules. Discuss effective methods that car while still preserving most of the interesting rules.	n be used to reduce the [2]
**************************************	**************************************	******