
Computational Learning Theory Mid Term Examination (35 points)
03/11/2022—— 9AM-10:30AM—— CS F453
Instructor: Snehanshu Saha Name:

Handwritten/printed notes and calculator are allowed. Laptop, mobile phone and any
other form of electronic gadget is NOT allowed. Any violation will be interpreted as

unfair means and disciplinary action will be taken. Read all directions carefully and write
your answers in the space provided.
ANSWER ALL QUESTIONS.

NOTE: Use supplementary pages provided to do the scratch work.

1. (10 points) Mark the following statements as True (T) or False (T). No explanation is neces-
sary. Each question carries 2 points.
(a) Let S = [(x1, y1); ::: (xn, yn)] be n linearly separable points by a separator through the
origin in Rd. Let S1 be generated from S as: S1 = [(cx1, cy1); ::: (cxn, cyn)], where c > 1 is a
constant. The error bound of perceptron on S1 is larger than the error bound on S.
(b) Suppose the VC dimension of a hypothesis class H is d. Suppose we are given samples
[(xi, yi); i = 1..n] where xi’s are distinct and n ≤ d. Then there always exists a hypothesis in
H which perfectly classifies the samples.
(c) To show that the VC-dimension of a concept class H (containing functions from X to (0,
1) is d, it is sufficient to show that there exists a subset of X with size d that can be labeled
by H in all possible 2d ways.
(d) The true error of a hypothesis h can be lower than its training error on the sample S.
(e) PAC Learning paradigm is easier to learn compared to the agnostic-PAC learning counter-
part.

2. (10 points) Consider the sum-of-squared-error decision function Js(a) =
∑n

i=1(a
tyi − bi)

2. As-
sume a is in the neighborhood of a local minima of J(a). Show that, for a positive learning rate
η(k), J indeed attains minima at the optimal η(k). This shows that we can compute optimal
learning rate for a quadratic decision function!

Hint: Use a second-order Taylor series expansion of the decision function at the point a(k):
J(a) = J(a(k)) +∇J t(a(k))(a− a(k)) + 1/2 ∗ (a− a(k))t ∗H(a(k))(a− a(k)) and the update
rule: a(k + 1) = a(k)− η(k)∇J(a(k)). Note H is the Hessian matrix.

3. (10 points) An axis aligned rectangle classifier in the plane is a classifier that assigns the
value 1 to a point if and only if it is inside a certain rectangle. Formally, given real numbers
a1 ≤ b1; a2 ≤ b2, the classifier returns 1 if a1 ≤ x1 ≤; b1; a2 ≤ x2 ≤ b2, else it returns 0. The
hypothesis class, H(|H| = ∞) is the collection of all the classifiers defined above.
Let A be the algorithm that returns the smallest rectangle enclosing all positive examples in
the training set. Show that A is an ERM. Furthermore, show that if A receives a training set
of size ≥ 4log(4/δ)

ϵ , then, with probability of at least 1− δ, it returns a hypothesis with error of
at most ϵ.

4. (5 points) Given a sample of m bounded points X = [(x1, x2, ..., xm), i, |xi| ≤ M ], define the

function f(X) =
∑n

i=1 xi

m . Furnish a bound on the probability Pr[|f(X)E[f(X)] ≥ ϵ].


