BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

NETWORK SECURITY (CS G513) SECOND SEMESTER 2022-23 MID-SEMESTER EXAMINATION (CLOSED BOOK)

Maximum Marks: 25 Time: 90 minutes

Instructions:

- Answer all parts of a question together in the answer sheet. Answers at separate places will not be accepted.
- 2. Do not write any information irrelevant to the question.
- Q.1. Answer the following:

 $[3 \times 2 = 6 \text{ M}]$

- a. What is avalanche effect in DES? Briefly describe its types with suitable examples.
- b. Given the keyword as "MONDAY", what should be the third letter of the second row in the 5×5 Playfair matrix (consider that the row and column numbering start from 1)? Also, what should be the key domain if a successful Brute-force attack is to be performed on the encrypted text generated using the devised matrix?
- Q.2. Consider a new prime polynomial for AES algorithm as $x^7 + x^5 + x^2 + x + 1$. What should be the effect of this modification on the Round Constant (RC) computation? Provide the RC word for the ninth round by considering new polynomial. [4 M]
- Q.3. Answer the following:

 $[3 \times 2 = 6 \text{ M}]$

- a. Given that the set G forms a group under the binary operation *, defined as a * b = a + b + 5; a, b ε G. Find the inverse of -12 in G.
- Considering extended Euclidean algorithm, find the greatest common divisor, gcd(a,b), and values of s and t for the below cases.

Case I: When a = 17 and b = 0

Case II: When a = 0 and b = 45

Q.4. What is broadcast attack in RSA? Given a secret value S as 150 and four different modulus $m_1 = 5$, $m_2 = 17$, $m_3 = 19$, and $m_4 = 29$, show (in clear and detailed step-wise manner) how this attack can be performed. [5 M]

Q.5. Given an efficient function ensemble (a function that is computable in polynomial time) g: {0,1}ⁿ → {0,1}^{l(n)}, with l(n) being a polynomial with l(n) > n. If for all adversaries A running in polynomial time, the success probability (prediction probability) of A for g is represented as:

 $P[A(I,g(X)_{\{1,\dots,I-1\}}) = g(X)_I] < \frac{1}{p(n)} \quad \forall p$

where, p is a polynomial, X and I are random variables distributed respectively on $\{0,1\}^n$ and on $\{1,...,l(n)\}$. Describe in detail which pseudo random property the given function ensemble represents by considering the success probability of adversaries, A. Provide sufficient justification to support your answer. [4 M]

[------ END OF QUESTION PAPER -----]