BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

	I SEMESTER 2022-2023 CS G519 – Social Media Analytics, Mid Semester (closed book)									
Time: 90 Minutes		Weightage: 25%	Date: 1 st Nov 2022							
1.	(a) Define Konigsberg bridge pro	blem. Represent Konigsberg bridge pro	blem in two different ways.							

- (b) Describe an application/network (not discussed in the class) that can be represented as a bipartite graph. [3]
- 2. Find Eigenvector centrality of the graph given below:
- 3. (a) Can we have a complete 4 node (A) and a 5 node (B) graphs each having exactly one unstable triangle?
 (b) Compare the degree distribution of a real network with that of random graph through a graph (no need to explain. Give only names). [4]
- 4. Similarity between two nodes of a network is given by Jaccard or cosine. What is the major drawback of these similarities? How can you rectify it? Deduce the modified similarity for it. [4]
- 5. To study about the structural holes, scientists study *redundancy* instead *local clustering coefficient*. The simplified definition of redundancy is as follows:
 The redundancy *R_i* of node *i* is the mean number of connections from a neighbor of *i* to other neighbors of *i*. (a) Find redundancy of *D* in the given graph. (b) What will be the minimum and the maximum possible redundancy values of a node in a graph? (c) Write local clustering coefficient in terms of redundancy *R_i* and degree *k_i* of a node *i*.

6. Consider the following data of a graph and show that nodes have power distribution or not. [3]

Degree (d)	100	70	40	20	10	8	6	4
Degree	1.6	3.3	10.8	46	198	317	580	1360
Distribution								
(<i>P</i> _d)								

7. (a) How do you find *k*-core in a given network? Describe in clear steps.
(b) Mark *k*-cores for *k*=1, 2, 3 in the given graph.

[4]

[3]