Advanced Algorithms \& Complexity (CS G526) Mid Sem Exam, 2023

There are 5 questions in all and total marks are $(1+1+3)+(2+3)+(5)+(5)+(2+3)=25$. This is an open book exam. You can use any printed or handwritten material. Calculators are allowed. Please show all steps of your solution and give full derivation of your results using efficient algorithms.

1. (a) In the SUBSET SUM problem we are given a list of n numbers A_{1}, \ldots, A_{n} and a number T and need to decide whether there exists a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} A_{i}=T$ (the language L_{1}). Prove or disprove

$$
L_{1} \in \mathrm{NP} .
$$

(b) We formulate the Load Balancing problem as follows. We are given a set of m machines M_{1}, \ldots, M_{m} and a set of n jobs; each job j has a processing time t_{j}. We seek to assign each job to one of the machines so that the loads placed on all machines are as "balanced" as possible. More concretely, in any assignment of jobs to machines, we can let $A(i)$ denote the set of jobs assigned to machine M_{i}; under this assignment, machine M_{i} needs to work for a total time of $T_{i}=\Sigma_{j \in A(i)} t_{j}$, and we declare this to be the load on machine M_{i}. We seek to minimize a quantity known as the makespan; it is simply the maximum load on any machine, $T=\max _{i} T_{i}$. Give a decision version of the Load Balancing problem (the language L_{2}).
(c) Prove or disprove

$$
L_{1} \leq_{p} L_{2} .
$$

2. We define a language L as follows:

$$
L=\{(M, x) \mid \text { TM } M \text { accepts } x\} .
$$

(a) Prove or disprove:

$$
L \in \text { PSPACE-COMPLETE. }
$$

(b) Prove or disprove:

$$
L \in \text { PSPACE-HARD. }
$$

3. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \wedge \neg x_{4}\right)$. Two players P_{1} and P_{2} are playing the QBF game with $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ as the Boolean function. P_{1} first selects the value of x_{1}, then P_{2} selects the value of x_{2}, then P_{1} selects the value of x_{3}, then P_{2} selects the value of x_{4}. Finally $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is evaluated. P_{1} wins if $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ evaluates to 1 , otherwise P_{2} wins. Draw the game tree corresponding to this QBF game and evaluate it. Find whether P_{1} has a winning strategy or not. If P_{1} is having a winning strategy, then describe it.
4. Show the working of the work-optimal EREW PRAM algorithm for adding n integers on the following input:

$$
\begin{aligned}
& 1,17,2,18,3,19,4,20,5,21,6,22,7,23,8,24 \\
& 9,32,10,31,11,30,12,29,13,28,14,27,15,26,16,25 .
\end{aligned}
$$

5. (a) Find the GCD, $(36,144,200)$, and the integers x, y, z such that

$$
(36,144,200)=36 x+144 y+200 z
$$

(b) Prove that there exist integers x_{1}, \ldots, x_{n} such that the GCD of n integers, $\left(a_{1}, \ldots, a_{n}\right)$, can be represented as their linear combination:

$$
\left(a_{1}, \ldots, a_{n}\right)=\sum_{j=1}^{n} a_{j} x_{j} .
$$

