Advanced Algorithms \& Complexity (CS G526) Comprehensive Exam, 2023

There are 5 questions in all and total marks are $7+7+7+7+(1+1+5)=35$. This is an open book exam. You can use any printed or handwritten material. Please show all steps of your solution and give full derivation of your results.

1. Let LINEQ denote the set of satisfiable rational linear equations. That is, LINEQ consists of the set of all pairs (A, b), where A is an $m \times n$ rational matrix and b is an m-dimensional rational vector, such that $A x=b$ for some n-dimensional vector x. Prove that LINEQ is in NP.
2. By making use of efficient algorithms, find the last three digits in the decimal expansion of

$$
3^{2023}
$$

3. Let $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ and $\alpha<1$. An algorithm A is an α-approximation for f if for every x,

$$
\alpha f(x) \leq A(x) \leq \frac{f(x)}{\alpha}
$$

Prove that if there is a polynomial-time algorithm that approximates \#CYCLE within a factor $1 / 2$, then $\mathbf{P}=\mathbf{N P}$.
4. Prove that a Strongly-2-Universal family of hash functions is also 2-Universal.
5. Let $\phi(x, y, z)=(\bar{x} \vee y \vee z) \wedge(x \vee \bar{y} \vee z) \wedge(x \vee y \vee \bar{z})$.
(a) Using arithmetization, find the equivalent polynomial $P_{\phi}(x, y, z)$ for ϕ.
(b) Compute

$$
K=\sum_{b_{1} \in\{0,1\}} \sum_{b_{2} \in\{0,1\}} \sum_{b_{3} \in\{0,1\}} P_{\phi}\left(b_{1}, b_{2}, b_{3}\right)
$$

(c) Given (ϕ, K) as input, taking the prime $p=17$, show the complete working of the sumcheck protocol.

