BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER 2023-24
 DE G611 DYNAMICS AND VIBRATION
 Mid-Semester Examination (Regular) (Closed Book+ Open Book)

Date: 11.10.2023
Maximum Marks: 25 (Weightage 25\%)
Time: 90 min .

PART -A (Closed Book) (15 Marks)

Q1. Using Lagrange's equation derive the equation of motion for system shown in the Fig. Q1. Write down the equation in Matrix form

Fig. Q1

Fig: Q2

Q2. Two discrete masses m_{1} and m_{2} are axially loaded on elastic steel wires as shown in Fig. Q2. Derive the equations of motion for the system. The length of the wires are $l_{l}=30 \mathrm{~cm}$ and $l_{2}=40 \mathrm{~cm}$ and diameter of the wire is 1 mm . If the masses are $m_{l}=30 \mathrm{~kg}$ and $m_{2}=50 \mathrm{~kg}$ find out the natural frequencies and corresponding mode shapes.

$$
\left\{E_{\text {steel }}=200 \mathrm{GPa}\right\}
$$

Q3. Determine the approximate fundamental frequency by using Rayleigh's method \& Dunkerley's equation for the system shown in Fig. Q3.

Fig. Q3

Q1. Consider a undamped linear spring-mass system governed by Equation of motion

$$
w t x+k x=P \cos { }^{2} \omega t
$$

With parameter, $m=1 \mathrm{~kg}, k=400 \mathrm{~N} / \mathrm{m}, F=100 \mathrm{~N}, \omega=5 \mathrm{rad} / \mathrm{s}$ and initial displacement $x(0)=10 \mathrm{~mm}$, and initial velocity $\dot{ \pm}(0)=0.1 \mathrm{~m} / \mathrm{s}$, Derive the total displacement response of mass ' m ' in terms of time. Also find the displacement and velocity of mass ' m ' after 2 second.

Hint: Total response means sum of free and forced vibration response

Q2. A mass spring discrete system shown in Figure Q2. The first natural frequency of the system is $\omega_{1}=0.438 \sqrt{\mathrm{k} / \mathrm{m}}$ and corresponding mode shape vectors is $\left[\begin{array}{llll}1.00 & 1.539 & 1.904\end{array}\right]$.
(i) Write down system matrices for the system
(ii) Determine normal mode shape vector for first natural frequency
(iii) Find the dynamic matrix for finding second natural frequency by matrix deflation method.

Figure Q2

