BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER 2023-24
 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY
 MID SEMESTER TEST (CLOSED BOOK)

Date : 10/11/2023

Name:

Duration : 90 Minutes

ID :
Tut sec :

Instruction: Answers should be presented in a clear and legible manner, to be considered for evaluation

Q1A) For a distortionless transmission line, the voltage wave is given by $v(-l, t)=$ $120 e^{+0.0025 \times l} \cos \left(10^{8} t+2 l\right)+60 e^{-0.0025 \times l} \cos \left(10^{8} t-2 l\right)$, where l is the distance from the load which is located at $z=0$. If $Z_{L}=300 \Omega$, find the following for the line:
(i) Propagation constant, phase velocity, and characteristic impedance
(ii) Expression for the current wave in time-domain form

Q1B) A lossless transmission line shown in Fig. 1 is 50 cm in length and operates at a frequency of 100 MHz . The line parameters are $L=0.2 \mu \mathrm{H} / \mathrm{m}$, and $C=80 \mathrm{pF} / \mathrm{m}$. The line is terminated in a short circuit at $z=0$. Further, there is an impedance $Z=50+j 20 \Omega$ connected across the line at location $z=-20 \mathrm{~cm}$. If $100 \angle 0^{\circ} V$ (peak) is applied to the line as shown, find the following:
(i) Characteristic impedance, phase velocity of the line
(ii) Input impedance seen by the source at plane $A A^{\prime}$
(iii) Average power delivered to impedance Z

Fig. 1 (Q1B)
(i) Write down Stoke's theorem in integral form (ii) Test if Stoke's theorem is satisfied by $\vec{A}=r$ $\cos \phi \mathrm{a}_{r}+\sin \phi \mathrm{a}_{\phi}$ over the path shown in Fig. 2

Fig. 2 (Q2A)

Q2B) Given a vector field $\vec{C}=r^{2} \sin \phi \mathrm{a}_{r}+z \cos \phi \mathrm{a}_{\phi}+r z \mathrm{a}_{z}$. Check the solenoidal and irrotational nature of this field at point $\mathrm{P}\left(1 \mathrm{~m}, 90^{\circ}, 4 \mathrm{~m}\right)$

Q3A) In free-space, there exists an electrostatic potential field $V=80 R^{2} \cos (\theta)$ and a point $P(2.5$ $\mathrm{m}, 30^{0}, 60^{\circ}$). Calculate the following for point P,
(i) Electric flux density
(ii) Magnitude of the maximum space rate of change of V
(iii) Unit normal to the equipotential surface
(iv) Volume charge density that produces V
[10]
Q3B) Fig. 3 shows Region 1, defined by $x<0$, is free-space, while region 2, $x>0$, is a good dielectric material for which $\varepsilon_{\mathrm{r} 2}=2.4$. Given $\vec{D}=3 a_{x}-4 a_{y}+6 a_{z}\left(\mathrm{C} / \mathrm{m}^{2}\right)$ in region 1 . Find \vec{E} in region 2 and the angles θ_{1} and θ_{2}.

>>>>> END <<<<<<<

