BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2023-24 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY MID SEMESTER TEST (CLOSED BOOK)

Date : 10/11/2023Duration : 90 MinutesMax marks : 60Name :ID :Tut sec :

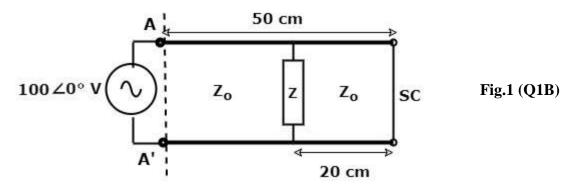
Instruction: Answers should be presented in a clear and legible manner, to be considered for evaluation

Q1A) For a distortionless transmission line, the voltage wave is given by $v(-l,t) = 120 e^{+0.0025 \times l} \cos(10^8 t + 2l) + 60 e^{-0.0025 \times l} \cos(10^8 t - 2l)$, where *l* is the distance from the load which is located at z = 0. If $Z_L = 300 \Omega$, find the following for the line:

[8]

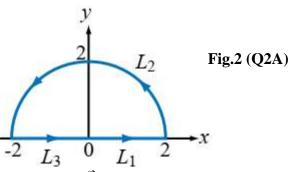
[12]

(i) Propagation constant, phase velocity, and characteristic impedance


(ii) Expression for the current wave in time-domain form

Q1B) A lossless transmission line shown in Fig. 1 is 50 *cm* in length and operates at a frequency of 100 *MHz*. The line parameters are $L = 0.2 \,\mu H/m$, and $C = 80 \,pF/m$. The line is terminated in a short circuit at z = 0. Further, there is an impedance $Z = 50 + j20 \,\Omega$ connected across the line at location $z = -20 \,cm$. If $100 \,\angle 0^\circ V$ (peak) is applied to the line as shown, find the following:

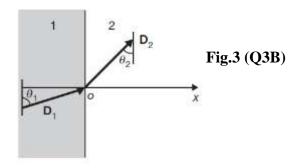
(i) Characteristic impedance, phase velocity of the line


(ii) Input impedance seen by the source at plane AA'

(iii) Average power delivered to impedance Z

Q2A)

(i) Write down Stoke's theorem in integral form (ii) Test if Stoke's theorem is satisfied by $\vec{A} = r \cos \phi a_r + \sin \phi a_{\phi}$ over the path shown in Fig.2 [12]



Q2B) Given a vector field $\vec{C} = r^2 \sin \phi \, a_r + z \cos \phi \, a_{\phi} + rz \, a_z$. Check the solenoidal and irrotational nature of this field at point P(1 m, 90⁰, 4 m) [8]

Q3A) In free-space, there exists an electrostatic potential field $V=80R^2\cos(\theta)$ and a point *P* (2.5 m, 30⁰, 60⁰). Calculate the following for point *P*,

- (i) Electric flux density
- (ii) Magnitude of the maximum space rate of change of V
- (iii) Unit normal to the equipotential surface
- (iv) Volume charge density that produces V [10]

Q3B) Fig.3 shows Region 1, defined by x < 0, is free-space, while region 2, x > 0, is a good dielectric material for which $\varepsilon_{r2} = 2.4$. Given $\vec{D} = 3a_x - 4a_y + 6a_z$ (C/m²) in region 1. Find \vec{E} in region 2 and the angles θ_1 and θ_2 . [10]

>>>>> END <<<<<<