BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2023-24 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY COMPREHENSIVE EXAMINATION- PART A (CLOSED BOOK)

Date : 09/12/2023	Duration : 60 Minutes	Marks : 20
Name :	ID :	
Instruction : Write the correct answer is struck off answers will not be rechecked.	n the space provided, and submit th	e sheet in 1 hr. Rewritten /
1. The gradient of $f = r^2 z \cos(2\phi)$ at $P(1,$	π/4, 2) is	-
2. The magnetic field intensity produced	by an infinite current sheet of negli	gible thickness lying in the
XY-plane is $0.5\mathbf{a_x}$ 0.5 $\mathbf{a_y}$ (A/m). The s	heet current density is given by	
(A/m)		
3. The electric potential in vacuum is $V=$	=x+2y. The electrostatic energy store	ed in a cube of side 1 m is
(J)		
4. Given vector M has magnitude CR^n w		
radially outward from the origin. If Div		
 An infinite line charge of 10 nC/m lies magnitude 	-	field strength at (2, 3,1) has
6. The relative permittivity of a dielectric	material is 6. The electric field intens	sity required to polarize this
material so that $\vec{P} = 10 a_z$ (C/m ²) is	(write in ter	ms of ε_0)
7. If $J = 10^4 \sin (\theta) a_R$, (A/m ²), the curr	ent flowing out of the surface of a	sphere of radius 0.01 m is
(A)		
8. A charge density of 1 $\mu C/m^3$ is pla	ced inside a metal block ($\sigma = 4.4$	55×10^6 S/m) at t=0. After
(see	c), its value will become 10 % of the	initial value.
9. For a low-loss transmission line,	R, L , C and G are related as	and
10. The power flow density vector	• •	
	(radially inward / along the wire	e length / from the wire to
ground)		

******** END *******

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2023-24 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY COMPREHENSIVE EXAMINATION <u>PART B</u> (OPEN BOOK)

Date : 09/12/2023	Duration : 120 Minutes	Marks : 60
Name :	ID :	

Instructions: Show all relevant steps of calculation. Answer all sub-sections of a given question in sequence. Unclear/randomly presented answers will not be evaluated.

Q1) A parallel plate capacitor is filled with a non-uniform dielectric characterised by $\varepsilon_r = 2+2 \times 10^6 x^2$, where *x* is the vertical distance measured from one plate. What is the capacitance of this arrangement? If the plate area is $S = 0.02 \text{ m}^2$, and spacing d = 1 mm, calculate the capacitance of the arrangement. [8]

Q2) The xerographic copying machine is an important application of electrostatics. It is composed of layers of air and photoconductor arranged between two large conducting electrodes as shown in Figure 1. Given that the upper electrode is maintained at a potential of V_0 , lower electrode is grounded and the surface charge density at the air-photoconductor interface is zero. Obtain the electric field in both regions. [10]

Q3) The wave equation in a medium is given by $\nabla^2 \hat{H} = (10^5 + j10^5)^2 \hat{H}$.

At 100 MHz, answer the following questions.

- (a) Comment on the type of the medium
- (b) Find its conductivity, phase velocity, wavelength, skin depth and the distance over which the wave will undergo a phase shift of 180° . [12]

Q4) Let the magnetic vector potential $\vec{A} = (3y - z)a_x + 2xza_y$ produced in air by some current distribution \vec{J} . Find the following quantities at point *P* (2,-1,3),

(a) Divergence of \vec{A}

- (b) Magnetic flux density
- (c) Magnetic field intensity
- (d) Current density \vec{J}

Q5) A conducting rectangular loop (single turn) is placed near a very long straight conducting wire in free space carrying DC current *I* as shown in Figure 2. Find the mutual inductance between the wire and loop. Calculate the mutual inductance if I = 10 A, a = 10 cm, b = 5 cm and d = 20 cm.

Q6) In a lossless medium ($\varepsilon_r=2$, $\mu_r=2$) a uniform plane wave is travelling along the direction of

 $\vec{k} = a_x + 2a_y$ Given that $\hat{E} = 10e^{j\pi/6}a_z(\frac{v}{m})$ at (x, y, z) = (0, 0, 0). Calculate the following,

- (a) Direction of wave propagation
- (b) Angular frequency of the wave
- (c) Expression for the electric field $\vec{E}(x, y, z, t)$
- (d) Expression for the magnetic field $\vec{H}(x, y, z, t)$
- (e) Average Poynting vector for the wave

********** END ********

[12]

[10]