Birla Institute of Technology and Science, Pilani.

Comprehensive Examination: CS/ECE/EEE/INSTR F215: Digital Design

Marks: 40 AY: 2023-24, Semester: I Date: 18-December-2023, Monday Time: 60 minutes CLOSED BOOK Pages:04

BITS ID:	Name:

Q1	Realize the Boolean expression using the minimum number of Transmission Gates (TGs).	[5
	$F(A, B, C, D) = \sum m(0, 4, 5, 6, 8, 9) + d(10, 11, 12, 13, 14, 15)$. True and compliment inputs are	
	available.	

Q2 For the following sequential circuit, construct the state table.

State	Present State	Input X	Output Z	Flip-flop Input		Next State Q_2^+ Q_1^+
	$Q_2 Q_1$			$J_2 K_2$	$J_1 K_1$	
S_0	0 0	0				
	0 0	1				
S_1	0 1	0				
	0 1	1				
S_2	1 0	0				
	1 0	1				
S_3	1 1	0				
	1 1	1				

[5]

Q3	A 4-bit shift register is shown in the figure below. It is clocked, and with each clock pulse, the pattern gets shifted by a one-bit position to the right.					ern [5]	
		Clk 1	0	0	1		
			, C				
	Assume that the init the following clock p		registers as 100	1. Write the	content of	the shift registers a	fter
		1	0		0	1	
	After 1st clock pulse	e					\dashv
	After 3rd clock puls	e					
	After 5th clock puls	e					
	After 7th clock puls	e					\dashv
	To what values sh the first clock puls		ster be initializ	ed so that	the patteri	n (1001) occurs a	fter
Q4	Use the following to (multiplier), using Assume $M = -12$	the booths algorit		n of two ni	ımbers, M	(multiplicand) an	d Q [5]
	A A	Q Q	Q ·1	С	ount	Command]
	00000	01000	0		-	Initialization	1
							1
]
							+
]
							-
							1
							1
							1

Q7 Identify the logic operation the given circuit performs on input A and input B. Also, complete the following table with respect to the state of the respective transistor (ON or OFF) for the various input combinations.

Input A	Input B	Q3	Q4	Q5	Q6	Output Z
0	0					
0	1					
1	0					
1	1					

Q8 Complete the partial truth table for the given Verilog code:

module Mini (input P, Q, Р Q R Q1 Q2 output X, Y assign X = P ^ Q: 0 0 1 assign $Y = \sim P \& Q$: 0 1 1 endmodule 0 0 1 module Top (input P, Q, R, 0 1 0 output Q1, Q2

Mini L0(P, Q, A, B); Mini L1(A, R, Q1, C); assign Q2 = B | <u>C</u>; endmodule

wire A, B, C;

[5]

[5]