Birla Institute of Technology and Science, Pilani
 Second Semester 2022-2023
 ECE/EEE/INSTR F242: Control Systems
 Comprehensive Examination (closed Book)

Date: May 11 ${ }^{\text {th }}, 2023$
Time: 2 Hrs
MM: 60

Q1. For the network shown in figure Q1 (a):
i) Write down the governing equations and determine the transfer function $\frac{V_{o}(s)}{V_{i}(s)}$

ii) Determine the value of C_{2} for damping ratio to be 2 and corresponding value of natural frequency of oscillations. In case of multiple solutions, which one would you choose and why? (take $\mathrm{R}_{1}=\mathrm{R}_{2}=2 \Omega$ and $\mathrm{C}_{1}=0.5 \mathrm{~F}$)
iii) Now, if $G(s)$ represents the transfer function $\frac{V_{o}(s)}{V_{i}(s)}$ in the figure Q1(b), calculate the gain margin and phase margin of the system.

iv) Determine the value of steady state error for an input of $\left(2+e^{-t}\right) u(t)$ in case of (iii)
[16]
Q2. The open loop transfer function of a negative feedback system is $\frac{K}{s(s+1)(0.1 s+1)}$. Sketch the Bode plots (take K=1 in the beginning) and therefrom determine the values of K for (i) gain margin to be 15 db and (ii) Phase margin to be 60° and (iii) system to be marginally stable. Start your plots at $\omega=0.1 \mathrm{rad} / \mathrm{s}$ in the semi-log graph sheet provided.

Q3. The forward path transfer function of a unity feedback system is given by $\frac{K(s+4)(s+3)}{s(s-3)(s+8)}$. Draw the Nyquist plot, apply Nyquist stability criterion to determine the stability of the closed loop system and number of unstable closed loop poles.

Q4. For the mechanical system shown below, write down the equations of motion and therefrom assuming position and velocities as the states, obtain a state space representation of the system. Consider x_{1} and x_{2} as the outputs and F_{1} and F_{2} as inputs. (Assume that mass m_{2} is connected to the hinge with a massless rod.)
[12]

