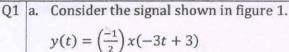
Birla Institute of Technology and Science, Pilani

Mid-Semester Examination: ECE / EEE / INSTR F243: Signals and Systems

Marks: 50


AY: 2022-23, Semester: II

Date: 18-March-2023, Saturday

[12]

[13]

Time: 90 minutes CLOSED BOOK Pages: 02

- (i) Sketch the signal x(t).
- (ii) Sketch the even and odd part of x(t).

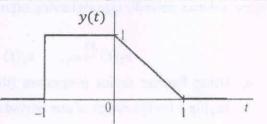


Figure 1

b. A causal LTI system with input x(t) and output y(t) is described as

$$\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - x(t);$$

Find the output y(t) of the system if the input is $x(t) = e^{-t}u(t)$.

All the sketches need to be clear and legible, with proper labeling of the x-axis and y-axis values

Q2 Determine and sketch the overall impulse response (H[n]) of the system shown in figure 2,

where

$$h_1[n] = (2)^n u[-n];$$

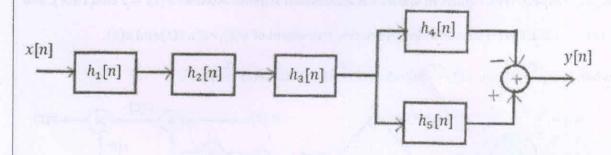
$$h_2[n] = (a)^n u[n];$$

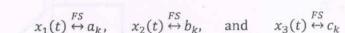
$$h_3[n] = \delta[n] - (a)\delta[n-1];$$

$$h_4[n] = [n-1]u[n];$$

$$h_5[n] = \delta[n] + nu[n-1];$$

H[n] should be sketched for range $-5 \le n \le 5$




Figure 2

All the sketches need to be clear and legible, with proper labeling of the x-axis and y-axis values

Birla Institute of Technology and Science, Pilani

Mid-Semester Examination: ECE / EEE / INSTR F243: Signals and Systems

Marks: 50 AY: 2022-23, Semester: II Date: 18-March-2023, Saturday
Time: 90 minutes CLOSED BOOK Pages: 02
Figure 3 shows periodic signals having exponential Fourier series coefficients as shown below:

Q3

- a. Using Fourier series properties (differentiation and linearity), compute a_k . Sketch $|a_k|vs|k$ for the range of one period of the signal $x_1(t)$.
- b. What is the relationship between $x_1(t)$ and $x_2(t)$? Obtain b_k in terms of a_k .
- c. What is the relationship between $x_1(t)$ and $x_3(t)$? Obtain c_k in terms of a_k .

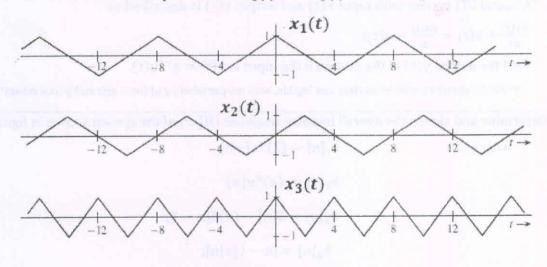


Figure 3

All the sketches need to be clear and legible, with proper labeling of the x-axis and y-axis values

Q4 Figure 4a shows two bandlimited signals m(t) and p(t), having Fourier transform $M(j\omega)$ and [12]

 $P(j\omega)$, respectively. Figure 4b shows a transmission scheme. Assume $q(t)=2\cos(100t)$, and

s(t)=q(2t). Determine and sketch Fourier transform of q(t), r(t), s(t) and z(t).

where $q(t) \overset{FT}{\leftrightarrow} Q(j\omega)$, $r(t) \overset{FT}{\leftrightarrow} R(j\omega)$, $s(t) \overset{FT}{\leftrightarrow} S(j\omega)$, and $z(t) \overset{FT}{\leftrightarrow} Z(j\omega)$,

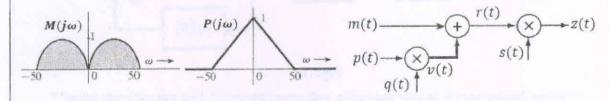


Figure 4a Figure 4b

All the sketches need to be clear and legible, with proper labeling of the x-axis and y-axis values

[13]