Birla Institute of Technology \& Science, Pilani - K K Birla Goa Campus

 I Semester 2019-2020
ECE F314 Electromagnetic Fields and Microwave Engineering Mid Semester Exam (Closed Book)
 Max Time: 1hr 30 Min
 Max. Marks: 60

Date: - 30-09-2019

Q. 1	A parallel plate air-filled capacitor has plate area of $10^{-4} \mathrm{~m}^{2}$ and plate separation of $10^{-3} \mathrm{~m}$. it is connected to a $0.5 \mathrm{~V}, 3.6 \mathrm{GHz}$ source. Calculate the magnitude of displacement current. $\left(\varepsilon_{0}=\frac{1}{36 \pi} * 10^{-9} \mathrm{~F} / \mathrm{m}\right)$	10
Q. 2	A current sheet $\vec{J}=10 \hat{\mathrm{u}}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$ lies on the dielectric interface $\mathrm{x}=0$ between two dielectric media with $\varepsilon_{\mathrm{r} 1}=1, \mu_{\mathrm{r} 1}=1$ in region $-1(\mathrm{x}<0)$, and $\varepsilon_{\mathrm{r} 2}=2, \mu_{\mathrm{r} 2}=2$ in region $-2(\mathrm{x}>0)$. If the magnetic field in region-1 at $x=0^{-}$is $\overrightarrow{H_{1}}=3 \hat{\mathrm{u}}_{\mathrm{x}}+30 \hat{\mathrm{u}}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$. what will be the magnetic field in region -2 at $x=0^{+}$.	10
Q. 3	The region $\mathrm{Z}<0$ is characterized by $\varepsilon_{\mathrm{r}}=\mu_{\mathrm{r}}=1$ and $\sigma=0$. The total electric field here is given by $E_{s}=150 e^{-j 10 z} \hat{u}_{x}+50 \angle 20^{0} e^{j 10 z} \hat{u}_{x} V / m$. what is the intrinsic impedance for the region $Z>0$.	5
Q. 4	Region $1, \mathrm{Z}<0$ and Region $2, \mathrm{Z}>0$, are both perfect dielectrics. A uniform plane wave travelling in the u_{z} direction has a frequency of $3 \times 10^{10} \mathrm{radian} / \mathrm{sec}$. Its wavelength in the two regions are $\lambda_{1}=5$ cm and $\lambda_{2}=3 \mathrm{~cm}$. Find the following (a) The energy reflected (in Percentage) from the boundary. (b) SWR.	10
Q. 5	Mark following points on smith chart: $\left(\mathrm{Z}_{0}=50 \mathrm{ohm}\right)$ (a) $Z=150+\mathrm{j} 100$, find corresponding reflection coefficient (Γ) (b) Given $\mathrm{Y}=10-\mathrm{j} 40$ mili-mho, Mark corresponding Impedance (Z) from smith chart. (c) $\operatorname{VSWR}=2, \angle \Gamma=120^{\circ}$ (d) Short circuit point and Open circuit Point.	10
Q. 6	A uniform plane wave $\mathrm{E}_{\mathrm{i}}=\left(10 \hat{u}_{x}+4 \hat{\mathrm{u}}_{y}-8 \hat{\mathrm{u}}_{z}\right) \mathrm{e}^{-\mathrm{j} 4 \pi(2 \mathrm{y}+\mathrm{z})}$ is incident on a dielectric-conductor interface ($\mathrm{Y}=0$ Plane). Calculate (a) The angle of incidence (b) Wave number or phase constant (k) (c) Reflected electric field ($\mathbf{E}_{\mathbf{r}}$).	10
Q. 7	A 50Ω transmission line is connected to a parallel combination of 100Ω resistance and 1 nF capacitance. Find VSWR on the line at a frequency of 2 MHz , Also find maximum and minimum resistance observed on the line.	5

