Birla Institute of Technology & Science, Pilani – K K Birla Goa Campus I Semester 2019-2020 ECE F314 Electromagnetic Fields and Microwave Engineering Mid Semester Exam (Closed Book) Date: - 30-09-2019 Max Time: 1hr 30 Min Max. Marks: 60

Q. 1	A parallel plate air-filled capacitor has plate area of 10^{-4} m ² and plate separation of 10^{-3} m. it is connected to a 0.5 V, 3.6 GHz source. Calculate the magnitude of displacement current. ($\varepsilon_0 = \frac{1}{36\pi} * 10^{-9} F/m$)	10
Q. 2	A current sheet $\vec{J} = 10 \ \hat{u}_y$ A/m lies on the dielectric interface $x = 0$ between two dielectric media with $\mathcal{E}_{r1} = 1$, $\mu_{r1} = 1$ in region -1 (x < 0), and $\mathcal{E}_{r2} = 2$, $\mu_{r2} = 2$ in region -2 (x > 0). If the magnetic field in region-1 at $x = 0^-$ is $\vec{H_1} = 3 \ \hat{u}_x + 30 \ \hat{u}_y$ A/m. what will be the magnetic field in region-2 at $x = 0^+$.	10
Q. 3	The region Z< 0 is characterized by $\varepsilon_r = \mu_r = 1$ and $\sigma = 0$. The total electric field here is given by $E_s = 150 \text{ e}^{-j10z} \hat{u}_x + 50 \angle 20^0 \text{ e}^{j10z} \hat{u}_x$ V/m. what is the intrinsic impedance for the region Z > 0.	5
Q. 4	Region 1, Z<0 and Region 2, Z>0, are both perfect dielectrics. A uniform plane wave travelling in the u_z direction has a frequency of 3 x 10 ¹⁰ radian/sec. Its wavelength in the two regions are $\lambda_1 = 5$ cm and $\lambda_2 = 3$ cm. Find the following (a) The energy reflected (in Percentage) from the boundary. (b) SWR.	10
Q. 5	 Mark following points on smith chart: (Z₀ = 50 ohm) (a) Z= 150+j100, find corresponding reflection coefficient (Γ) (b) Given Y = 10-j40 mili-mho, Mark corresponding Impedance (Z) from smith chart. (c) VSWR = 2, ∠Γ = 120⁰ (d) Short circuit point and Open circuit Point. 	10
Q. 6	A uniform plane wave $E_i = (10\hat{u}_x + 4\hat{u}_y - 8\hat{u}_z) e^{-j4\pi (2y+z)}$ is incident on a dielectric-conductor interface (Y= 0 Plane). Calculate (a) The angle of incidence (b) Wave number or phase constant (k) (c) Reflected electric field (E _r).	10
Q. 7	A 50 Ω transmission line is connected to a parallel combination of 100 Ω resistance and 1 nF capacitance. Find VSWR on the line at a frequency of 2 MHz, Also find maximum and minimum resistance observed on the line.	5