BITS PILANI K.K. BIRLA GOA CAMPUS I SEMESTER 2022-23 COMPREHENSIVE EXAM ECON F213: Mathematical and Statistical Methods 27/12/22 Time: 3 Hours Total Marks: 40

Instructions:

- 1. If you need to make any assumptions, clearly state them
- 2. Final answers must be clearly stated along with all supporting analysis
- 1. Consider a perfectly competitive coffee producing firm operating in an underdeveloped country. The profit maximizing firm produces coffee using production function $q = F(x_1, x_2)$ where $F_1 > 0 > F_{11}$ and $F_2 > 0 > F_{22}$. Assume that output produced q depends on two variables: Input1 (x_1) and number of child labor (x_2) . Each unit of Input1 is hired at the prevailing market price (denoted by w_1) and each child labor is hired at prevailing wage rate (denoted by w_2). The firm's profit maximizing choice of inputs are denoted by x_1^* , x_2^* . The objective of this exercise is to analyze how to *reduce* the use of child labor in coffee production. Consider the following predictions from three economists.
 - A. Economist1 assumes that $F_{12} > 0$ and predicts that an increase in P, the price per unit of coffee would lead to decrease in use of x_2^* , ceteris paribus. Use appropriate comparative static analysis to examine this prediction. Clearly state whether you Agree/ Disagree with the prediction.
 - B. Economist2 assumes that $F_{12} = 0$ and predicts that an increase in w_1 would lead to decrease in use of x_2^* , ceteris paribus. Use appropriate comparative static analysis to examine this prediction. Clearly state whether you Agree/ Disagree with the prediction.
 - C. Economist3 is not sure about the sign of F_{12} but still predicts that a decrease in w_2 would lead to decrease in use of x_2^* , ceteris paribus. Use appropriate comparative static analysis to examine this prediction. Clearly state whether you Agree/ Disagree with the prediction. [5X3=15]
- 2. The demand functions for fish (F) and chicken (C) are specified as follows:

$$D_F = f(P_F, P_C) \text{ where } f_1 = \frac{\partial f}{\partial P_F} < 0, f_2 = \frac{\partial f}{\partial P_C} > 0$$
$$D_C = g(P_F, P_C) \text{ where } g_1 = \frac{\partial g}{\partial P_F} > 0, g_2 = \frac{\partial g}{\partial P_C} < 0$$

Here P_F , P_C denotes the price of fish and price of chicken respectively.

The supply of fish depends on the number of fishermen (N) and its price according to the function:

$$S_F = h(P_F, N), \text{ where } h_1 = \frac{Ch}{\partial P_F} > 0, h_2 = \frac{Ch}{\partial N} > 0$$

The supply of chicken depends only on its price:

$$S_c = r(P_c)$$
, where $r' > 0$

Assume, as discussed in class, that "own price effect" dominates the "cross price effect" for both the commodities.

- A. Derive the comparative static impact of a *decrease* in number of fishermen (N) on the equilibrium quantity and price of chicken. Write your FINAL ANSWER in terms of f_i, g_i, h_i, r' [6]
- B. Derive the comparative static impact of a *decrease* in number of fishermen (N) on the equilibrium quantity and price of fish. Write your FINAL ANSWER in terms of f_i , g_i , h_i , r' [4]

3. Following is an inter-industry input output table. Cell Xij represents the *value* of Industry i output used as input in the production of Industry j output. The values are in millions of Rupees.

			То		
		Industry I	Industry II	Industry III	Consumption Demand
	Industry I	20	60	10	50
From	Industry II	50	10	80	10
	Industry III	40	30	20	40

- A. Assume that Labor is the only *non-industrial* input is used in the production of each of these industrial products. Calculate $\frac{Value \ of \ Labor}{Value \ of \ Output}$ coefficient for each of the 3 industries. [3]
- B. Suppose the Consumption Demand changes to $\begin{bmatrix} 70\\ 25\\ 50 \end{bmatrix}$. On the basis of the available information, calculate the new Xij and complete the following table. [9]

		То					
		Industry I	Industry II	Industry III			
	Industry I						
From	Industry II						
	Industry III						

C. Using the results obtained in A and B, calculate the Total wage that must be paid to labor in order to produce the Total Output as obtained in part B. [3]