BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI (RAJASTHAN)
 First Semester 2023-2024
 EEE F111: Electrical Sciences
 Comprehensive Exam (Closed Book): Part A

Date: 07.12. 2023 Suggested Time: 45 Minutes Max Time: 1Hr. MM: 45
Note: Write your answers clearly in the blanks as per the unit given.
Q1-Q11 each correct blank carries 2 Marks and Q12-Q13 each correct blank carries 3 Marks.
Name: ID No: Sec. No.

Q1. In circuit given in Fig Q1, the value of $V_{a b}$ is
\qquad V and I is \qquad A.

Q2. A star connected load having 5Ω in each phase is transformed to an equivalent delta connected load. The value of the equivalent resistance in each phase is
\qquad Ω.

Q3. The current through a $10-\mathrm{mH}$ inductor is shown in Fig Q3. The voltage across the inductor, at $\mathrm{t}=1 \mathrm{~ms}$ is \qquad V.

Q4. A source supplies two loads which are connected in parallel. One load is of 300 kW at 0.6 pf (lag) and another is of 400 kW at 0.8 pf (lead). The total active power supplied by the source is \qquad W and total reactive power supplied by the source is \qquad VAR.

Fig Q1

Fig Q3
Q5. In the circuits (a, b, c, d) shown below, circuits \qquad are equivalent.

(a)

(b)

(c)

(d)

Q6. Generator converts mechanical energy into \qquad energy (Mechanical/Electrical).

Q7. The current in the high voltage side of a $2 \mathrm{kVA}, 200 \mathrm{~V} / 100 \mathrm{~V}$ transformer is \qquad A.

Q8. The total energy dissipated in resistor ' R ' in the circuit shown in Fig Q8 if $v(0)=5 V, \mathrm{R}=1 \mathrm{M} \Omega$ and $C=1 \mu F$, is \qquad J. The value of time (t) at which the current $i_{R}(t)$ reduces to the half of $i_{R}(0)$ value, is \qquad sec.

Q9.For the circuit shown in Fig Q9, if the switch gets closed at $\mathrm{t}=0$, the value of $i(0)$ is \qquad and $i(\infty)$ is \qquad -.

Fig Q9

Q10. In a parallel RLC circuit, the value of Resistance $\mathrm{R}=100 \Omega, \mathrm{C}=10 \mu \mathrm{~F}$. The resonant frequency is 1200 Hz . The value of the quality factor of this circuit is \qquad .

Q11. In a series RLC circuit, the Quality factor is 25.1 , the bandwidth is 9424.77 rad/s, its resonance frequency will be \qquad KHz.

Q12. The p -side of a Germanium pn junction has conductivity of $50 \mathrm{mho} / \mathrm{m}$ and n -side has conductivity of $100 \mathrm{mho} / \mathrm{m}$. Given, electron and hole mobilities are $0.38 \mathrm{~m}^{2} / \mathrm{V}$-s and $0.18 \mathrm{~m}^{2} / \mathrm{V}$-s respectively. For an intrinsic concentration of Germanium to be $2.5 * 10^{19} \mathrm{~m}^{-3}$, the N_{A} is \qquad and N_{D} is \qquad . With these values of N_{A} and N_{D}, the barrier potential across junction at 300 K is \qquad V.

Q13. A cylindrical solenoid (cylinder over which coils are wound), the core has a mean radius of 10 cm , and a mean path length of 20 cm . A current of 5 A produces a magnetic flux density of 0.1 T in the core. The number of turns required for air core and iron core (relative permeability 1000), are \qquad and \qquad respectively.

Note: Attempt all the parts of a question in sequence.
Make neat solutions showing all the necessary steps

Q1(i) A resistance of 6Ω is connected in series with a coil of resistance R and Inductance L . This combination is supplied by a $240 \mathrm{Vrms}, 50 \mathrm{~Hz}$ source as shown in Fig Q1(i). The voltage drop across 6Ω resistance is 60 V and across the coil is 205 V . Calculate:

(a) resistance and inductance of the coil
(b) active power loss in the circuit.
(ii) In the circuit shown in Fig Q1(ii), determine current through 8Ω resistance applying Thevenin's Theorem. Also calculate power factor of the circuit.
[7+8]
Fig.Q1(i)

Fig.Q1(ii)
Q2 For the circuit shown in Fig Q2, find the expression of output voltage V_{0} and sketch its waveform for one cycle, if V_{s} $=15 \sin (\omega \mathrm{t}) \mathrm{V}$. Assume loss-less (ideal) operation of the diode. [18]

Fig.Q2

Q3 Both the transistors T 1 and T 2 have $\beta=120$ and biased with $\mathrm{Vcc}=12 \mathrm{~V}$, as shown in the Fig Q3. Find VceT1 and VceT2. The transistors are in active region.

Fig.Q3

Q4(i) For the enhancement MOSFET shown in Fig Q4(i), $V_{G S}=8 \mathrm{~V}$ and $i_{D}=9 \mathrm{~mA}$. For $V_{t}=2 \mathrm{~V}$ and $V_{G G}=10 \mathrm{~V}$, find i_{D} and $V_{D S}$ when $R_{D}=250 \Omega$.

Q4(ii) In the Fig Q4(ii), find $V_{D S}$ and V_{p} if the JFET is in the active region at $I_{D S S}=8 \mathrm{~mA}$. [8 +12]

Fig Q4(i)

Q5 (i) An Ideal Transformer circuit feeding to a resistive load as shown in Fig Q5(i). Find (a) The source current I_{1} (b) the output voltage V_{\circ} (c) the complex power supplied by the source.

(ii) In the circuit shown in Fig Q5(ii), find
(ii) In the circuit shown in Fig Q5(ii), find
the output voltage V_{0}. Assume all OP AMPs to be ideal. [14+6]

Fig Q5(i)

Fig.Q5(ii)

