BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJASTHAN) First Semester 2023-2024 EEE F111: Electrical Sciences

Comprehensive Exam (Closed Book): Part A

Date: 07.12. 2023 Suggested Time: 45 Minutes Max Time: 1Hr. MM: 45

- Q10. In a parallel RLC circuit, the value of Resistance R= 100Ω , C= 10μ F. The resonant frequency is 1200 Hz. The value of the quality factor of this circuit is _____.
- Q11. In a series RLC circuit, the Quality factor is 25.1, the bandwidth is 9424.77 rad/s, its resonance frequency will be _____KHz.
- Q12. The p-side of a Germanium pn junction has conductivity of 50 mho/m and n-side has conductivity of 100 mho/m. Given, electron and hole mobilities are 0.38 m²/V-s and 0.18 m²/V-s respectively. For an intrinsic concentration of Germanium to be $2.5*10^{19}$ m-³, the N_A is ______ and N_D is ______. With these values of N_A and N_D, the barrier potential across junction at 300K is _______V.
- Q13. A cylindrical solenoid (cylinder over which coils are wound), the core has a mean radius of 10 cm, and a mean path length of 20 cm. A current of 5 A produces a magnetic flux density of 0.1 T in the core. The number of turns required for air core and iron core (relative permeability 1000), are ______ and _____ respectively.

MM: 90

Note: Attempt all the parts of a question in sequence.

Make neat solutions showing all the necessary steps

Q1(i) A resistance of 6Ω is connected in series with a coil of resistance R and Inductance L. This combination is supplied by a 240 Vrms, 50 Hz source as shown in Fig Q1(i). The voltage drop across 6 Ω resistance is 60 V and across the coil is 205 V. Calculate:

- (b) active power loss in the circuit.
- (ii) In the circuit shown in Fig Q1(ii), determine current through 8Ω resistance applying Thevenin's Theorem. Also calculate power factor of the circuit. [7+8]
- Q2 For the circuit shown in Fig Q2, find the expression of output voltage V_o and sketch its waveform for one cycle, if V_s = 15 sin(ω t) V. Assume loss-less (ideal) operation of the diode. [18]

Q3 Both the transistors T1 and T2 have β =120 and biased with Vcc=12 V, as shown in the Fig Q3. Find VceT1 and VceT2. The transistors are in active region. [17]

Q4(i) For the enhancement MOSFET shown in Fig Q4(i), $V_{GS} = 8V$ and $i_D = 9$ mA. For $V_t = 2V$ and $V_{GG} = 10V$, find i_D and V_{DS} when $R_D = 250\Omega$.

 $V_{DD} = +16V$ $V_{DD} = 18 V$. 2 kΩ ID $V_D = 12 V$ 680 kΩ 12 V DS V_{DS} V_{GS} V_{GG} 110 kΩ 0.68 kΩ Fig Q4(ii) Fig Q4(i)

Q4(ii) In the Fig Q4(ii), find V_{DS} and V_p if the JFET is in the active region at $I_{DSS} = 8mA$. [8 +12]

Q5 (i) An Ideal Transformer circuit feeding to a resistive load as shown in Fig Q5(i). Find (a) The source current I_1 (b) the output voltage V_o (c) the complex power supplied by the $120/0^{\circ}$ V mms source.

(ii) In the circuit shown in Fig Q5(ii), find the output voltage V_0 . Assume all OP AMPs to be ideal. [14+6]

