BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI II Semester 2022-2023 EEE F111 Electrical Science Comprehensive Examination (Closed Book)

MM: 135

15th July'23

Time: 180 minutes

[25]

(i) Attempt all parts of a question consecutively.

(ii) Full credit will only be given for neat solution and showing all the required steps.

- Q1. For the circuit given below, using any method, determine:
 - (i) Current supplied by the voltage source
 - (ii) Power dissipated in 5 Ω resistor (between b & c)
 - (iii) The venin Resistance seen across 3Ω resistor (between a & c).

Q2.(a) For the given ideal op-amp circuit, if $R_3 = R_2$ and $V_y = 1V$, the output expression of v_0 is expressed as $v_0 = R_4(\alpha V_{in} + \beta)$, then find the values of α and β . [15]

(b) A consumer requires 88 kW power at a power factor of 0.707 lagging by using 480 V rms, 50Hz. The transmission line resistance from the power company's transformer to the consumer house is 0.12Ω . Determine the power that must be supplied by the power company:

- (i) Under present conditions and
- (ii) If the consumer correct power factor from 0.707 to 0.90 lagging. [15]
- Q3.(a) A rectangular magnetic iron core having a relative permeability of 1500 is wrapped over by a coil which is having 2000 turns and carries a current of 200 mA as shown in figure below. An air gap of 2 mm is created into it to make it work in linear region. Find the
 - (i) total reluctance of the magnetic circuit.
 - (ii) magnetic flux in the air gap
 - (iii) self-inductance "L" of the coil. Assume no fringing effect.

[15]

- (b) For the given transformer circuit in figure below, find
- (i) Value of n (transformer ratio) for maximum power supplied to the load of 200Ω .
- (ii) Current in the primary coil corresponding to the maximum power transfer condition.

Q4.(a) The zener diode circuit shown below, contains two silicon Zener diodes D_1 and D_2 with saturation currents of 5 nA and 10 nA, respectively, at 300 K, and both diodes have breakdown voltages of 8 V. The i-v characteristics for the diodes are also shown below. Find the current i and voltages v_1 and v_2 for $v_8 = 10$ V by checking the following conditions: Condition 1: Both D₁ and D₂ are in breakdown region,

[15]

Condition 2: D_1 is in reverse bias

Condition 3: D_2 is in reverse bias.

- A piece of germanium has 4.4 X 10²⁸ atoms/m³ and has an intrinsic concentration of 2.5 X **(b)** 10^{19} m⁻³ at 300 K. If one side is doped with one part per 10^8 of an acceptor impurity, how many parts per million of a donor impurity should the other side be doped such that the barrier potential across the resulting pn junction 0.3 V? Assume $V_T = 26mV$ at 300K. [15]
- For the circuit shown below, suppose that $R_B = 230 \text{ k}\Omega$, $R_{C1} = 1 \text{ k}\Omega$, $R_{C2} = 0 \Omega$, $R_E = 2 \text{ k}\Omega$, Q5. and $V_{_{RR}} = 3V$ and $V_{_{CC}} = 6$ V.

(i) Given that the Si BJTs have $\beta = 100$, verify that the transistors are in the active region by finding $i_{C1}, v_{CE1}, i_{C2}, \& v_{E2}$.

(ii) Now if Q_2 is disconnected from V_{CC} & Q_1 and for $V_{BB} = 13$ V, Q_1 start operating in saturation region, calculate the value of dc current gain (h_{FE}) for Q_1 . [25]
