BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 II Semester 2022-2023
 EEE F111 Electrical Science
 Comprehensive Examination (Closed Book)

MM: 135
$15^{\text {th }}$ July' 23
Time: 180 minutes
(i) Attempt all parts of a question consecutively.
(ii) Full credit will only be given for neat solution and showing all the required steps.

Q1. For the circuit given below, using any method, determine:
(i) Current supplied by the voltage source
(ii) Power dissipated in 5Ω resistor (between $\mathrm{b} \& \mathrm{c}$)
(iii) Thevenin Resistance seen across 3Ω resistor (between a \& c).

Q2.(a) For the given ideal op-amp circuit, if $\mathbf{R}_{\mathbf{3}}=\mathbf{R}_{\mathbf{2}}$ and $\mathbf{V}_{\mathbf{y}}=\mathbf{1 V}$, the output expression of $\mathrm{v}_{\mathbf{0}}$ is expressed as $\mathrm{v}_{\boldsymbol{o}}=\mathbf{R}_{\mathbf{4}}\left(\boldsymbol{\alpha} \mathbf{V}_{\mathrm{in}}+\boldsymbol{\beta}\right)$, then find the values of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$.

(b) A consumer requires 88 kW power at a power factor of 0.707 lagging by using 480 V $\mathrm{rms}, 50 \mathrm{~Hz}$. The transmission line resistance from the power company's transformer to the consumer house is 0.12Ω. Determine the power that must be supplied by the power company:
(i) Under present conditions and
(ii) If the consumer correct power factor from 0.707 to 0.90 lagging.

Q3.(a) A rectangular magnetic iron core having a relative permeability of 1500 is wrapped over by a coil which is having 2000 turns and carries a current of 200 mA as shown in figure below. An air gap of 2 mm is created into it to make it work in linear region. Find the
(i) total reluctance of the magnetic circuit.
(ii) magnetic flux in the air gap
(iii) self-inductance "L" of the coil. Assume no fringing effect.

(b) For the given transformer circuit in figure below, find
(i) Value of n (transformer ratio) for maximum power supplied to the load of 200Ω.
(ii) Current in the primary coil corresponding to the maximum power transfer condition.

Q4.(a) The zener diode circuit shown below, contains two silicon Zener diodes D_{1} and D_{2} with saturation currents of 5 nA and 10 nA , respectively, at 300 K , and both diodes have breakdown voltages of 8 V . The i-v characteristics for the diodes are also shown below. Find the current i and voltages v_{1} and v_{2} for $\mathrm{v}_{\mathrm{S}}=10 \mathrm{~V}$ by checking the following conditions: Condition 1: Both D_{1} and D_{2} are in breakdown region, Condition 2: D_{1} is in reverse bias
Condition 3: D_{2} is in reverse bias.

(b) A piece of germanium has $\mathbf{4 . 4} \times \mathbf{1 0}^{\mathbf{2 8}}$ atoms $/ \mathrm{m}^{3}$ and has an intrinsic concentration of $\mathbf{2 . 5} \mathbf{X}$ $10^{19} \mathrm{~m}^{-3}$ at $\mathbf{3 0 0} \mathrm{K}$. If one side is doped with one part per 10^{8} of an acceptor impurity, how many parts per million of a donor impurity should the other side be doped such that the barrier potential across the resulting $p n$ junction 0.3 V ? Assume $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$ at 300 K . [15]

Q5. For the circuit shown below, suppose that $R_{B}=230 \mathrm{k} \Omega, R_{C 1}=\mathbf{1 k} \Omega, R_{C 2}=\mathbf{0} \Omega, R_{E}=\mathbf{2 k \Omega}$, and $V_{B B}=3 \mathrm{~V}$ and $V_{C C}=6 \mathrm{~V}$.
(i) Given that the Si BJTs have $\boldsymbol{\beta}=\mathbf{1 0 0}$, verify that the transistors are in the active region by finding $\boldsymbol{i}_{C 1}, v_{C E 1}, i_{C 2}, \& \boldsymbol{v}_{E 2}$.
(ii) Now if $\mathbf{Q}_{\mathbf{2}}$ is disconnected from $\mathbf{V}_{\mathbf{C C}} \& \mathbf{Q}_{\mathbf{1}}$ and for $\mathbf{V}_{\mathbf{B B}}=13 \mathrm{~V}, \mathbf{Q}_{\mathbf{1}}$ start operating in saturation region, calculate the value of dc current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ for $\mathbf{Q}_{\mathbf{1}}$.

