BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

First Semester 2022-2023
EEE/INSTR/ECE F211: Electrical Machines
Mid Semester Test (Open Book)
Max Marks: 75
Time: 90 Min
Date: 02-11-2022
Note: There are $\mathbf{4}$ questions in total. Attempt all sub-parts of a question together.
Q1. A 4 pole, star connected alternator runs at 1500 rpm . The armature winding is of twolayer type. The coils are connected in such a way that the $5^{\text {th }}$ harmonic gets eliminated therefore short pitched by 3 slots. The flux/pole is 0.286 Wb and generated line voltage is 6000 V . Calculate the number of conductors/slot/layer.
[20]
Q2. The magnetic core in figure shown below is wound with two coils and has two air-gaps. If coil-2 carries 3 A current in the direction shown, then what should be the current in coil1 to establish a flux density of 1.4 T in the air gaps? If the coil-2 carries 3 A current but in the opposite direction, then what will be the current in coil-1? The B-H curve data for the core material is as follows.

$\mathrm{H}(\mathrm{AT} / \mathrm{m})$	100	300	600	900
$\mathrm{~B}(\mathrm{~T})$	0.14	0.75	1.3	1.4

Q3(a). The maximum efficiency of a $500 \mathrm{kVA}, 3300 / 500 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer is 97% and occurs at 75% of full load and unity power factor. If the leakage impedance is 10%, calculate the
(i) full load copper loss
(ii) resistance and reactance in per unit and
(iii) voltage regulation at full load, and 0.8 pf lagging.
(b) Scott-connected transformers are supplied from $11 \mathrm{kV}, 3-\mathrm{phase}, 50 \mathrm{~Hz}$ mains. The secondaries of these transformers are connected in series to supply a two phase resistive load which draws 500 A at a voltage of $200 \sqrt{ } 2 \mathrm{~V}$. Calculate the (i) turns-ratio of the teaser transformer and (ii) input line current I_{B} and I_{c}.

Q4. Two single phase transformers A and B when tested, provided the following short circuit test results:
Transformer A : $60 \mathrm{~V} ; 26.83 \mathrm{~A} ; 288 \mathrm{~W}$
Transformer B : 60 V; 33.28A; 664 W
These transformers are now connected in parallel for supplying a load of $(5+j 3) \Omega$. The no-load emf of transformer A is 510 V and that of transformer B is 500 V . Calculate the following:
(i) Circulating current at no load
(ii) Current output of each transformer and its power factor
(iii) Calculate the reactance to be connected in series with transformer B so that the magnitude of current is shared equally.

