BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER 2022-23
 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY MID SEMESTER TEST (CLOSED BOOK)

Date : 04/11/2022

Name :

Instruction: Answers should be presented in a clear and legible manner, to be considered for evaluation

1A) Two conducting spherical shells with radii $a=3 \mathrm{~cm}$ and $b=6$ cm are placed concentrically. The dielectric in the interior region is $\varepsilon_{r}=1$ for $0<\phi<\pi / 2$ and $\varepsilon_{r}=8$ for the remaining space. Assume $+Q$ coulombs is placed on the inner sphere. Start with Gauss's law to find out the capacitance of the shell. [10 M]

1B) If $\boldsymbol{F}=r \cos (\phi) \boldsymbol{a}_{r}+\sin (\phi) \boldsymbol{a}_{\boldsymbol{\phi}}$, verify Stoke's theorem for the surface S enclosed by path $a-b-c-d-a$ shown in Fig.1. [10 M]

2A) An infinite line charge of $\rho_{L}=40 \mathrm{nC} / \mathrm{m}$ lies at location $x=6 \mathrm{~m}, y=3 \mathrm{~m}$ in freespace. (a) What is the electric field intensity at $P(x, y, z)$? Now suppose an infinite, perfectly conducting plane is placed at $x=4 \mathrm{~m}$, and is grounded. (b) What is the electric field intensity at location $P(7,-1,5) \mathrm{m}$ due to the line charge in the presence of the ground plane? $[\mathbf{1 0} \mathbf{M}]$

2B) A parallel-plate capacitor has its conducting plates kept at $x=0$ and d. The space between the plates is filled with an inhomogeneous material with permittivity profile, $\varepsilon=\varepsilon_{0}(1+x / d)$. The plate at $x=d$ is maintained at V_{0} while the plate at $x=0$ is grounded. Solve Laplace's equation for this boundary value problem to obtain the distributions of the (a) Potential, V (b) Electric field, \boldsymbol{E} and (c) Polarization vector, \boldsymbol{P}, between the plates, (d) and finally the surface charge density, ρ_{s} on the inner face of the upper plate. [$\mathbf{1 0} \mathbf{~ M}$]

3A) For a transmission line, the primary constants are $0.8 \Omega / \mathrm{m}, 0.3 \mu \mathrm{H} / \mathrm{m}, 75 \mathrm{pF} / \mathrm{m}$ and $0.01 \mathrm{~S} / \mathrm{m}$. The line is operating at the sinusoidal frequency of 10 MHz . For this line, find the (a) Characteristic impedance (b) Propagation constant (c) Phase velocity (d) Test if this line is distortionless. [$\mathbf{8} \mathbf{M}$]

3B) Fig. 2 shows a transmission line (TL) network containing two junctions J1 and J2. As shown, at J1 TL-1 and TL-2 are joined to TL-3. Given that TL-1 and TL-2 are identical in terms of characteristic impedance (75Ω) and length. TL-1 is short-circuited and TL-2 is open-circuited as shown. If the short-circuited input impedance of TL-1 (when disconnected from rest of the
network) is $\mathrm{j} 25 \Omega$, find the (a) Input impedance ($\mathrm{Z}_{\mathrm{in} 1}$) seen from the left of junction J 1 (b) Reflection coefficient presented to the left of the junction J1 if TL-3 has 100Ω impedance and $\lambda / 4$ m length

In continuation, Fig. 2 also shows that at junction J2, TL-3 (100 $\Omega, \lambda / 4 \mathrm{~m})$ and TL-4 (100 $\Omega, \lambda / 2$ m) are joined to TL-5 ($50 \Omega, \lambda / 5 \mathrm{~m}$). Find the (c) Input impedance ($\mathrm{Z}_{\mathrm{in} 2}$) seen from the left of junction J2 (d) Reflection coefficient presented to the left of the junction J2 (e) Overall input impedance of the network ($\mathrm{Z}_{\mathrm{in} 3}$). [12 M]

END

