## BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI <br> FIRST SEMESTER 2022-23 <br> EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY COMPREHENSIVE EXAMINATION- PART A (CLOSED BOOK)

Date : 27/12/2022
Suggested time : 60 Minutes
Marks : 20

Name:
ID :
Tut sec :
Instruction: Write the correct answer in the space provided, and submit the sheet by 60 Min. Rewritten / struck off answers will not be rechecked.
(1) The input impedance of a short-circuited transmission line of 15 cm length, with $\mathrm{Z}_{0}=60 \Omega$, and $\gamma=j 8.5 \mathrm{~m}^{-1}$ is $\qquad$ $(\Omega)$
(2) A $\lambda / 4$ long, lossless $100 \Omega$ transmission line is terminated by $210 \Omega$ load. If the voltage at the load is 80 V , the voltage at the input end is $\qquad$ (V).
(3) Given $\vec{H}=\frac{2.39 \times 10^{6}}{r} \cos (\varnothing) \boldsymbol{a}_{r} \mathrm{~A} / \mathrm{m}$ in free-space. The flux that crosses the region $-\pi / 4 \leq \phi \leq$ $\pi / 4,0 \leq z \leq 1 \mathrm{~m}$ is $\qquad$ (Wb)
(4) A current sheet $\vec{J}_{s}=9 \boldsymbol{a}_{\boldsymbol{y}}(\mathrm{A} / \mathrm{m})$ lies at $z=0$. Region-1 is $\mathrm{z}<0$ with $\mu_{\mathrm{r} 1}=4$ and Region -2 is $\mathrm{z}>0$ with $\mu_{\mathrm{r} 2}=3$. If $\vec{H}_{2}=14.5 \boldsymbol{a}_{x}+8 \boldsymbol{a}_{z}(\mathrm{~A} / \mathrm{m}), \vec{H}_{1}=$ $\qquad$ ( $\mathrm{A} / \mathrm{m}$ )
(5) The volume charge density inside a medium ( $\sigma=10^{-4} \mathrm{~S} / \mathrm{m}$ ) decrease to one-third of its initial value in $20 \mu \mathrm{~s}$. The dielectric constant of the medium is $\qquad$ .
(6) Two homogeneous dielectric regions are given : Region-1 ( $r<4 \mathrm{~cm}, \varepsilon_{\mathrm{r} 1}=3.5$ ) and Region-2 ( $r>4$ $\mathrm{cm}, \mathcal{\varepsilon}_{12}=1.5$ ). If $\vec{D}_{2}=12 \boldsymbol{a}_{r}-6 \boldsymbol{a}_{\phi}+9 \boldsymbol{a}_{z} \mathbf{n C} / \mathbf{m}^{2}, \vec{D}_{1}=$ $\qquad$ (C/m2)
(7) In Q6, the electrostatic energy density stored in Region-1 is $\qquad$ $\left(\mathrm{J} / \mathrm{m}^{3}\right)$
(8) Moist soil has a conductivity of $10^{-3} \mathrm{~S} / \mathrm{m}$ and relative permittivity of 2.5 at 9 GHz . Thus it can be considered as a $\qquad$ medium at 9 GHz . (Conducting / Dielectric / Non-homogeneous/Anisotropic)
(9) At a frequency of 1.6 MHz , the phase velocity of EM wave through Aluminum ( $\sigma=3.82 \times 10^{7} \mathrm{~S} / \mathrm{m}$ ) is $\qquad$ ( $\mathrm{m} / \mathrm{s}$ )
(10) Aluminum exhibits $\qquad$ dispersion for EM waves (Normal /Anomalous /Diamagnetic /Non-linear)

# BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI <br> FIRST SEMESTER 2022-23 <br> EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY COMPREHENSIVE EXAMINATION PART B (OPEN BOOK) 

Date : 27/12/2022
Duration : 120 Minutes
Marks : 60

## Name :

Tut sec :

Instructions: Show all relevant steps of calculation. Answer all sub-sections of a given question in sequence. Unclear / illegible / random answers will not be evaluated.

Q1) A metal bar of conductivity $\sigma$ is bent to form a flat $90^{\circ}$ sector of inner radius $a$ and outer radius $b$, and thickness $t$ as shown in Figure 1. Treating this as a boundary value problem, obtain expression for the resistance between the vertical surfaces at $r=a$ and $r=b$. Given $V(r=a)=0 \mathrm{~V}$ and $V(r=b)=10 \mathrm{~V}$.


Figure 1

Q2) An EM wave travelling in a medium ( $\varepsilon_{r}=2, \mu_{\mathrm{r}}=2$ ) is represented by the time-harmonic form, $\vec{E}=100 \cos (\omega t+2 y-4 z) a_{x} \quad(V / m)$. Find the following parameters of the wave.
(a) Polarization (type and sense)
(b) Wavelength
(c) Unit vector in the direction of propagation
(d) Angular frequency
(e) Magnetic field intensity in time-harmonic form
(f) Average power flow density vector

Q3) A transmission line circuit is shown in Figure 2. Consider two source frequencies, $f_{1}=60 \mathrm{~Hz}$ , and $f_{2}=500 \mathrm{kHz}$. Answer the following questions.
(a) Find at each frequency, what is the simplest, yet accurate model (lumped element model or distributed element model) for analyzing the given circuit
(b) Find $V_{\text {out }}$ at each frequency using the appropriate analysis method (circuit theory or transmission line theory)
(c) Using the result in (b) find the average power delivered to the load at each frequency
[15 M]


Figure 2

Q4) A uniform plane wave propagating in free-space $\left(\varepsilon_{0}, \mu_{0}, \eta_{0}, k_{0}\right)$ is represented by the phasor $\hat{E}_{\text {inc }}=25 e^{-j k_{0} z} a_{x}+j 25 e^{-j k_{0} z} a_{y}(V / m)$. It is incident at the plane boundary ( $z=0$ ) of a medium having $\sigma / \omega \varepsilon \gg 100$.
(a) Calculate the transmission and reflection coefficients at $z=0$
(b) Find the expression for the reflected wave $\hat{E}_{r e f}$
(c) Identify the polarization (type and sense) of the reflected wave
(d) Obtain the expression for the total electric field intensity $\hat{E}_{\text {tot }}$ for $z<0$ and $z>0$
(e) Obtain the expression for the total magnetic field intensity $\widehat{H}_{t o t}$ for $z<0$ and $z>0$
(f) Express the current density for all $z$

