BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2022-23 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY COMPREHENSIVE EXAMINATION- <u>PART A</u> (CLOSED BOOK)

Date : 27/12/2022	Suggested time : 60 Minutes	Marks : 20
Name :	ID :	Tut sec :
Instruction : Write the correct answ / struck off answers will not be rec.	wer in the space provided, and submit the she hecked.	eet by 60 Min. Rewritten
(1) The input impedance of a shore $\gamma = j8.5 \text{ m}^{-1} \text{ is }$	ort-circuited transmission line of 15 cm leng	gth, with $Z_0=60 \Omega$, and
-	nsmission line is terminated by 210 Ω load. I at end is	-
) a _r A/m in free-space. The flux that crosse(Wb)	es the region $-\pi/4 \le \phi \le$
	lies at $z = 0$. Region-1 is $z < 0$ with $\mu_{r1} = 4$ and), $\vec{H}_1 = _$	
· · · · ·	ide a medium (σ =10 ⁻⁴ S/m) decrease to one- nt of the medium is	
	regions are given : Region-1 ($r < 4 \text{ cm}, \varepsilon_{r1}=3$ +9 a_z nC/m ² , $\vec{D}_1 =$	
(7) In Q6, the electrostatic energy	density stored in Region-1 is	(J/m ³)
	of 10 ⁻³ S/m and relative permittivity of 2.5 a medium at 9 GHz. (Co	
(9) At a frequency of 1.6 MHz, the is	e phase velocity of EM wave through Alumit (m/s)	num (σ =3.82×10 ⁷ S/m)
(10) Aluminum exhibits/Anomalous /Diamagnetic /No	÷	EM waves (Normal

******** END *******

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2022-23 EEE/INSTR/ECE F212 ELECTROMAGNETIC THEORY COMPREHENSIVE EXAMINATION PART B (OPEN BOOK)

Date : 27/12/2022	Duration : 120 Minutes	Marks : 60
Name :	ID :	Tut sec :

Instructions: Show all relevant steps of calculation. Answer all sub-sections of a given question in sequence. Unclear / illegible / random answers will not be evaluated.

Q1) A metal bar of conductivity σ is bent to form a flat 90⁰ sector of inner radius *a* and outer radius *b*, and thickness *t* as shown in **Figure 1**. Treating this as a boundary value problem, obtain expression for the resistance between the vertical surfaces at *r*=*a* and *r*=*b*. Given *V*(*r*=*a*)=0 V and V(r=b)=10 V. [15 M]

Q2) An EM wave travelling in a medium ($\varepsilon_r=2, \mu_r=2$) is represented by the time-harmonic form,

 $\vec{E} = 100\cos(\omega t + 2y - 4z)a_x$ (V/m). Find the following parameters of the wave.

- (a) Polarization (type and sense)
- (b) Wavelength
- (c) Unit vector in the direction of propagation
- (d) Angular frequency
- (e) Magnetic field intensity in time-harmonic form
- (f) Average power flow density vector [15 M]

Q3) A transmission line circuit is shown in **Figure 2**. Consider two source frequencies, $f_1 = 60 Hz$, and $f_2 = 500 kHz$. Answer the following questions.

(a) Find at each frequency, what is the <u>simplest, yet accurate</u> model (lumped element model or distributed element model) for analyzing the given circuit

- (b) Find V_{out} at each frequency using the appropriate analysis method (circuit theory or transmission line theory)
- (c) Using the result in (b) find the average power delivered to the load at each frequency

Q4) A uniform plane wave propagating in free-space (ε_0 , μ_0 , η_0 , k_0) is represented by the phasor $\hat{E}_{inc} = 25e^{-jk_0z} a_x + j25e^{-jk_0z} a_y (V/m)$. It is incident at the plane boundary (z=0) of a medium having $\sigma/\omega\varepsilon >>100$.

- (a) Calculate the transmission and reflection coefficients at z=0
- (b) Find the expression for the reflected wave \hat{E}_{ref}
- (c) Identify the polarization (type and sense) of the reflected wave
- (d) Obtain the expression for the total electric field intensity \hat{E}_{tot} for z < 0 and z > 0
- (e) Obtain the expression for the total magnetic field intensity \hat{H}_{tot} for z < 0 and z > 0
- (f) Express the current density for all z

[15 M]