Birla Institute of Technology and Science Ist semester 2016-2017 EEE F214/ INSTR F214 Electronic Devices Comprehensive Examination [Part A(closed Book) + Part B (Open Book)] Part A (Close Book)

Date: 07/12/2016	MM : 40	Time:60 min
ID:	Name:	Sec:

Note: Put "Tick ($\sqrt{}$)" Marks on the right option wherever applicable (Bold)/fill in the blanks. Answer should be in fresh & final form. In case of overwriting the corresponding answer will not be evaluated.

1.	Diffusion co-efficient increases / decreases with raise in temperature and its ratio with mobility increases / decreases / remain
	same. [2]
2.	The junction potential of a p-n junction increases / decreases / remain same with the rise in temperature and the depletion width
	increases / decreases / remain same. [2]
3.	A solar cell having short circuit current as 0.5 mA and reverse saturation dark current as 0.5 nA at room temperature. The open
	circuit voltage and this voltage would increase / decrease with the rise in temperature. [2]
4.	A light emitting diode having radiation recombination life time as 10% of that of non radiative recombination carrier life time, the
	inband efficiency would be% and if it becomes 20% this would comes out to be%. [2]
5.	In a photodetector, if we increase the incident photon frequency the responsivity will increase / decrease and the minimuum
	acceptable frequency would depend on junction width / material / temperature. [2]
6.	A n^+p based solar cell is designed having junction area A, the suitable expression for reverse saturation current is approximated
	as a function of A, D _n , D _p , n _p , p _n , L _n , L _p and this would increase / decrease with slight increase of doping in p-
	region. [2]
7.	The impurity scattering based mobolity increase / decrease with rise in temperature and dominates over lattice scattering based
	impurity at lower / higher temperature. [2]
8.	In an n-type Ge sample Haynes-Shockley experiment the distance between probes is 3.0 cm and applied voltage is 4 V and the
	pulse reaches at output after 1 ms. This will provide mobility of electron / hole and the value would be [2]
9.	A forward biased p^+n diode is changed at t=0 into a reverse bias the behaviour of junction just after would be forward / reverse /
	ohmic and the time taken to make junction voltage to zero will increase / decrease if doping of n-region is increased. [2]
10	. In the MOSFET scaling the impurity concentration is increased / decreased and the MOS capacitance of the device increases /
	decreases. [2]
11	. Usually, Webster effect in BJT increases / decreases the base transient time and this is due to [2]
12	. Usually higher base doping improves / deteriorate the speed of BJT and gain in this case increase / decrease. The device
	performance can be improved by managing injection efficiency/ base transport factors using homojunction/heterojunction. [4]

14. On a given n-channel MOS structure flant band voltage V_{FB} is applied from t=0 to t=1.0 s and at t>1.0 s a voltage $V_g \gg V_T$ (Threshold) is applied and a small signal capacitance at high frequency is measured. We then stress the structure to induce trap states. Sketch CV plot for both the cases. [4]

15. For a long channel NMOS under normal bias sketch qualitative behaviours of channel mobility with respect to V_{GS} variation, Temperature variation and Substrate doping variation. Now, assume we have a short channel device, comment on the mobility degradation in the channel mentioning the exact location in the channel ? [6]