Birla Institute of Technology and Science, Pilani. Comprehensive Examination: EEE F243/ INSTR F243: Signals and Systems Marks: 90 AY: 2016-17, Semester: II Date: 11-May-2017, Thursday **Time: 180 minutes CLOSE BOOK Pages: 02** Note: Neat and legible figures must be drawn wherever mentioned with all credentials.

a. Sketch the following signal $1 \cdot x[n] = \delta \left[\cos \frac{\pi}{6} n \right]$ $2 \cdot x(t) = u \left(\sin \frac{\pi}{7} t \right) - u \left(-\sin \frac{\pi}{7} t \right)$ 15 Q 1

- b. Consider the system shown in figure 1a with x(t) as input and y(t) as output. Determine whether it is (1) memoryless, (2) causal, (3) linear, (4) time-invariant or (5) stable. Justify your answer.
- c. Consider the feedback system shown in figure 1b. Assume that y[n] = 0 for n < 0. Sketch the output y[n], when $x[n] = \delta[n]$ and x[n] = u[n][04+05+06]

- **Q 2** a. Consider the signal $x[n] = \alpha^n u[n]$. Determine the signal $g[n] = x[n] \alpha x[n-1]$. Use **15** this result in conjunction with the properties of convolution to determine a sequence h[n]such that $x[n] * h[n] = \left(\frac{1}{2}\right)^n \left[u[n+2] - u[n-2]\right]$. Where * denote convolution. Perform all operations in time domain only.
 - b. Using graphical convolution method, compute and sketch the output y(t) for a continuous-time LTI system whose impulse response is $h(t) = e^{-3t}u(t)$ and the input is x(t) = u(t-3) - u(t-5).[08+07]
- Figure 3a shows the frequency response $H(j\omega)$ of a continuous-time system (filter). For each **15 Q**3 of the input signals x(t) below, determine the system output y(t).

Birla Institute of Technology and Science, Pilani.Comprehensive Examination:EEE F243/ INSTR F243: Signals and SystemsMarks: 90AY: 2016-17, Semester: IIDate: 11-May-2017, ThursdayTime: 180 minutesCLOSE BOOKPages: 02

Q4 Figure 4a show the sampling and reconstruction process.

 $x(t) = 10\cos(600\pi t)\cos^2(1600\pi t)$ is an input signal, $p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$ is an impulse train, $f_s = 4000 \text{ Hz}$ is sampling frequency, *n* is an integer, $H(j\omega)$ is the frequency response of a low-pass filter with cut-off frequency f_c Hz. Precisely mention values of frequencies (*f*) in Hz, and amplitude/magnitude on the sketch.

- a. Find the range of cut-off frequencies f_c in Hz of low-pass filter such that $x_r(t) = x(t)$.
- b. Sketch magnitude response of $X(j\omega)$, $Y(j\omega)$, $H(j\omega)$, $X_r(j\omega)$ and find $x_r(t)$, what should be the minimum sampling frequency f_s for $x_r(t) = x(t)$.
- c. Sketch magnitude response of $Y(j\omega)$, $H(j\omega)$, $X_r(j\omega)$ and find $x_r(t)$ for $f_s = 2500 \text{ Hz}$ and $f_c = 1250 \text{ Hz}$ $x(t) \longrightarrow y(t) \longrightarrow H(j\omega) \longrightarrow x_r(t)$

[02+08+05]

Q 5 a) The signal $y(t) = e^{-2t}u(t)$ is the output of a causal all-pass system for which the system **15** function is $H(s) = \frac{s-1}{s+1}$. Find at least two possible input x(t) that could produce y(t) and sketch the respective ROC. What is the input x(t) if it is known that $\int_{-\infty}^{\infty} x(t)dt < \infty$.

p(t)

Figure 4a

b) Using Laplace transform find the transfer function and frequency response of
1. Ideal delay of T sec, 2. Ideal differentiator, and 3. Ideal integrator
Plot the magnitude and phase responses [09+06]

Q 6 A causal LTI system is given by the difference equation y[n] - 3y[n-1] + 2y[n-2] = x[n] **15**

- a) Find H(z). Plot the poles and zeros and sketch the ROC.
- b) Realize the system function using Direct-I form.
- c) Find the impulse response. Is the system stable? Justify your answer.
- d) If the system is not causal, determine the all possible system functions, associated ROCs, and impulse responses which satisfy the preceding difference equation. Specify whether the corresponding systems are stable.
- e) Find y[n] if $x[n] = 3^n u[n]$, sketch ROC. [03+02+03+04+03]

15