Birla Institute of Technology and Science, Pilani.

Mid-Semester Examination: EEE F243/ INSTR F243: Signals and Systems
Marks: 60 AY: 2016-17, Semester: II Date: 09-March-2017, Thursday
Time: 90 minutes
OPEN BOOK
Note: Neat and legible figures must be drawn wherever mentioned with all credentials.
Q 1
a) If $[n]=\left\{1,1,1,1,1, \frac{1}{2}\right\}$. \uparrow indicates the value at $\mathrm{n}=0$.
sketch $x[n], \quad x[n-2], \quad x[4-2 n], \quad x\left[\frac{n}{2}\right]\left\{\frac{1}{2} \delta[n+2]-\delta[n-8]\right\}$.
b) Consider a system with input $x(t)$ and with output $y(t)$ given by

$$
y(t)=\sum_{n=-\infty}^{\infty} x(t) \delta(t-n T)
$$

Is this system linear? Is this system time-invariant?
For each part, if your answer is yes, show why this is so. If your answer is no, produce a counter example.
c) Suppose that the input to this system is $x(t)=\cos 2 \pi t$. Sketch and label carefully the input $x(t)$, output $y(t)$ for each of the following values of $T: T=\frac{1}{2}, \frac{1}{8}$.
$[5+5+5=15 \mathrm{M}]$
Q 2 a) $x[n]$ is a periodic signal with period $\mathrm{N}=8$ and Fourier series coefficient a_{k}. Sketch 15 one period of $x[n]$ from the information below:

1. $a_{k}=-a_{k-4}$
2. $x[2 n-1]=(-1)^{n}$.
b) Sketch the magnitude and phase of the frequency response of a linear, timeinvariant system with the following unit impulse response:

$$
h[n]=\delta[n]-\delta[n-3] .
$$

c) Sketch (one cycle of) the magnitude and phase spectrum of a periodic signal shown in figure 1 below:

Figure 1: Periodic signal

Birla Institute of Technology and Science, Pilani.

Mid-Semester Examination: EEE F243/ INSTR F243: Signals and Systems Marks: 60 AY: 2016-17, Semester: II Date: 09-March-2017, Thursday

Time: 90 minutes OPEN BOOK

Q 3 a) Consider the causal LTI system characterized by the difference equation below. Write an expression for the impulse response $\left(h_{1}[n]\right)$ of this system.

$$
\text { System 1: } y[n]=-\frac{2}{3} y[n-1]+x[n]+\frac{8}{27} x[n-3]
$$

b) Is the system causal? Is the system stable? Does the system have memory? Justify your answer using the impulse response.
c) Determine and write a closed-form expression for the output $y[n]$ of System 1 for the input $x[n]=3\left(\frac{1}{3}\right)^{n} u[n]$.
d) Consider a second LTI system described by the following difference equation. Determine the impulse response $\left(h_{2}[n]\right)$ for System 2. Write your answer in sequence form, using an arrow to denote the $n=0$ value.

$$
\text { System 2: } \quad y[n]=-y[n-1]+x[n]+x[n-5]
$$

e) Determine the output $y[n]$ when input $x[n]=(n+1)\{u[n]-u[n-4]\}$ is applied to cascade combination of System 1 and System 2 described in (a) and (d) respectively. Write your answer in sequence form, using an arrow to denote the $n=0$ value.
f) Sketch output $y[n]$.

$$
[2+3+3+2+4+1=15 \mathrm{M}]
$$

Q4 Consider an LTI system with impulse response

$$
h(t)=\left\{\frac{\sin (5 \mathrm{t}) \sin (15 \mathrm{t})}{\pi \mathrm{t}^{2}}\right\} 2 \cos (25 t)
$$

a) Determine and plot the frequency response $H(j \omega)$.
b) Determine the output $y(t)$ of the given LTI system for the input $x(t)$. The final answer $(\boldsymbol{y}(\boldsymbol{t}))$ should be represented as sum of sinusoids.

$$
x(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n \frac{2 \pi}{5}\right)
$$

c) Sketch $X(j \omega)$ and $Y(j \omega)$.

