Birla Institute of Technology and Science, Pilani.Mid-Semester Examination:EEE F243/ INSTR F243: Signals and SystemsMarks:60AY: 2016-17, Semester: IIDate: 09-March-2017, ThursdayTime:90 minutesOPEN BOOKPages: 02

Note: Neat and legible figures must be drawn wherever mentioned with all credentials. **Q 1** a) If $[n] = \{1, 1, 1, 1, 1, \frac{1}{2}\}$. \bigstar indicates the value at n=0.

sketch
$$x[n]$$
, $x[n-2]$, $x[4-2n]$, $x\left[\frac{n}{2}\right]\left\{\frac{1}{2}\delta[n+2] - \delta[n-8]\right\}$.

b) Consider a system with input x(t) and with output y(t) given by

$$y(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t - nT)$$

Is this system linear? Is this system time-invariant?

For each part, if your answer is yes, show why this is so. If your answer is no, produce a counter example.

c) Suppose that the input to this system is $x(t) = \cos 2\pi t$. Sketch and label carefully the input x(t), output y(t) for each of the following values of $T: T = \frac{1}{2}, \frac{1}{8}$.

[5+5+5=15M]

15

- Q 2 a) x[n] is a periodic signal with period N=8 and Fourier series coefficient a_k. Sketch 15 one period of x[n] from the information below:
 - 1. $a_k = -a_{k-4}$
 - 2. $x[2n-1] = (-1)^n$.
 - b) Sketch the magnitude and phase of the frequency response of a linear, timeinvariant system with the following unit impulse response:

$$h[n] = \delta[n] - \delta[n-3].$$

c) Sketch (one cycle of) the magnitude and phase spectrum of a periodic signal shown in figure 1 below:

Figure 1: Periodic signal

[5+5+5=15M] Page 1 of 2

Birla Institute of Technology and Science, Pilani.Mid-Semester Examination:EEE F243/ INSTR F243: Signals and SystemsMarks:60AY: 2016-17, Semester: IIDate: 09-March-2017, ThursdayTime:90 minutesOPEN BOOKPages: 02

Q 3 a) Consider the causal LTI system characterized by the difference equation below. **15** Write an expression for the impulse response ($h_1[n]$) of this system.

System 1:
$$y[n] = -\frac{2}{3}y[n-1] + x[n] + \frac{8}{27}x[n-3]$$

- b) Is the system causal? Is the system stable? Does the system have memory? Justify your answer using the impulse response.
- c) Determine and write a closed-form expression for the output y[n] of System 1 for the input $x[n] = 3\left(\frac{1}{3}\right)^n u[n]$.
- d) Consider a second LTI system described by the following difference equation. Determine the impulse response $(h_2[n])$ for System 2. Write your answer in sequence form, using an arrow to denote the n = 0 value.

System 2:
$$y[n] = -y[n-1] + x[n] + x[n-5]$$

- e) Determine the output y[n] when input $x[n] = (n + 1)\{u[n] u[n 4]\}$ is applied to cascade combination of System 1 and System 2 described in (a) and (d) respectively. Write your answer in sequence form, using an arrow to denote the n = 0 value.
- f) Sketch output y[n].

[2+3+3+2+4+1=15M]

15

Q4 Consider an LTI system with impulse response

$$h(t) = \left\{\frac{\sin(5t)\sin(15t)}{\pi t^2}\right\} 2\cos(25t)$$

- a) Determine and plot the frequency response $H(j\omega)$.
- b) Determine the output y(t) of the given LTI system for the input x(t). The final answer (y(t)) should be represented as sum of sinusoids.

$$x(t) = \sum_{n=-\infty}^{\infty} \delta\left(t - n\frac{2\pi}{5}\right)$$

c) Sketch $X(j\omega)$ and $Y(j\omega)$.

[5+5+5=15M]