Time: 90 min. Max. Marks = 80 Date: 13-3-2022 (9-10:30 am)	ı)
--	----

Unless given specifically

Take -- $V_{DD} / Vcc = 4 V$,

For NMOS device $\mu_n \text{Cox} = 140 \ \mu\text{A}/\text{V}^2$, $V_{\text{Tn}} = 0.7 \ \text{V}$, $\lambda = 0.1 \ \text{V}^{-1}$, $\gamma = 0.45 \ \sqrt{\text{V}}$, $\text{Cox} = 0.38 \ \text{pF}/\mu\text{m}^2$ For PMOS device $\mu_p \text{Cox} = 40 \ \mu\text{A}/\text{V}^2$, $V_{\text{Tp}} = -0.8 \ \text{V}$, $\lambda = 0.1 \ \text{V}^{-1}$, $\gamma = 0.4 \ \sqrt{\text{V}}$, $\text{Cox} = 0.38 \ \text{pF}/\mu\text{m}^2$ For NPN/ PNP $\beta = 100$, $|V_{\text{BE}}| = 0.7 \ \text{V}$, and $V_t = 25 \ \text{mV}$, $\alpha = 1$, $I_s = 10^{-12} \text{A}$, $V_A = 100 \text{V}$, Vce,sat = 0.2 V

NOTE:

If not specified in the question, -----

- Ignore γ , λ in the drain current equation. Assume matched components wherever required
- Specify your assumptions. Justify your answers. Unless specified, assume all MOSFETs are biased in the saturation region. Label your sketches properly. All symbols have usual meaning.
- The body (B) terminals of all the PMOSFETs are connected to V_{DD}, NMOSFETs are connected to the ground.

Q1. (a) Consider the Circuit shown in Fig. 1.

 $V_{DD} = 5 V, R_D = 5 k\Omega, V_{GSQ} = 2 V, \mu_n Cox (W/L) = 0.5$

mA/V², $V_{tn} = 0.8$ V, $\lambda \approx 0$.

- I. Calculate the quiescent values I_{DQ} and V_{DSQ} .
- II. Determine the low-frequency small signal voltage $gain(V_0/V_i)$.
- III. If $v_i = 0.1 \sin \omega t V$, sketch and label the i_0 and V_0 waveforms properly with respect to time.

 $\beta = 100, R_1 = 200 \text{ k}\Omega, R_2 = 200 \text{ k}\Omega, R_{E1} = 240 \Omega, R_{E2} = 20 \text{ k}\Omega, R_C = 2\text{k}\Omega, V_{BE(ON)} = 0.7 \text{ V},$

 $V_A = \infty$, $V_{Thermal} = 0.025V$

- I. Identify the circuit topology.
- II. Calculate the I_{CQ} and V_{CEQ} .
- III. Find small signal parameters $\mathbf{g}_{\mathbf{m}}$ and \mathbf{r}_{π} .
- IV. Draw and label the small signal model and calculate the low-frequency voltage gain (Vout/Vs).
- V. How will the I_{CQ} change for the given AC(circuit if the value of $R_{E1} = R_{E2} = 0$ in the circuit? Comment on the operating region of the amplifier after the above change.

[22 Marks]

Q2. Consider the 2-port network representation of a unilateral system shown in Fig. 3.

Given ----

- When S_1 closed and S_2 closed: $V_1 = 0.5V$, $I_1 = 10\mu A$ and $I_2 = 1mA$
- When S_1 open and S_2 open: $I_2 = 1mA$ and $V_2 = 5V$.
- I. Find the **h-parameter** matrix. Also, Sketch and label the **h-parameter** model of the network.
- II. Find the **z-parameter** matrix. Also, sketch and label the **z-parameter** model of the network.
- III. If a signal source $V_i = 0.5V$ is connected to port 1 of the z-parameter model and a load resistance of $25k\Omega$ is connected to port 2 of the model. Now, calculate the following in dB; voltage gain (V_{out}/V_i), current gain (I_0/I_i) and Power gain.

[18 Marks]

Q3. Consider the circuit of Fig. 4. Ignore the body bias effect (Perform intuitive analysis)

Given: MOSFET: $\lambda = 0.1V^{-1}$, $V_{tn} = 1V$, $\mu_n C_{ox} = 100 \mu A/V^2$, $V_{ov} = 0.2V$

BJT: $V_{BEon} = 0.6V$, $V_A = 100V$ and $V_{CEsat} = 0.2V$

- I. Identify the topology of stage 1 and stage 2.
- II. Calculate the current \mathbf{I}_{D1} .
- III. Calculate the voltage swing at nodes V_x and V_{out} .
- IV. Sketch and label the small signal model.
- V. Calculate the G_m and R_{out} of Stage-1. Hence, find the gain V_x/V_{in} and V_{out}/V_x . (Hint: Consider loading effect of stage 2 in calculations)
- VI.Assume, node V_x is connected to node B.Now, calculate G_m and R_{out} of first stage (Hint:
Consider loading effect of stage 2 in calculations)[25 Marks]
- Q4. Circuit shown in Fig. 5(a) is used to bias circuit shown in Fig. 5(b), and generate voltages V_{B1} , V_{B2} , V_{B3} , using MOSFET transistors. Assume all the transistors are operating in active region.
 - Given that the total power consumption of Fig 5(a) and Fig. 5(b) together is 7500 μ W
 - Assume $|V_T| = 1V$, $V_{ov} = 0.2V$ for all the transistors.

- I. Determine the value of \mathbf{I}_{REF} current.
- II. Now, sketch the schematic of NMOS block (BLK2) in Fig. 5(a).
- III. Draw the circuit (schematic) of PMOS block (BLK1) in Fig. 5(a). Hence, draw the complete circuit of Fig. 5(b) including biasing circuit.
- IV. Now, for Fig. 5(b), compute DC values of voltages V_{B1} , V_{B2} and V_{B3}
- V. Determine the value of V_{GS} of transistor M5 shown in Fig. 5(a). [15 Marks]

-----XXX------