Unless given specifically

Take -- $\mathrm{V}_{\mathrm{DD}} / \mathrm{Vcc}=4 \mathrm{~V}$,
For NMOS device $\mu_{\mathrm{n}} \mathrm{Cox}=140 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{Tn}}=0.7 \mathrm{~V}, \lambda=0.1 \mathrm{~V}^{-1}, \gamma=0.45 \mathrm{~V} \mathrm{~V}$, Cox $=0.38 \mathrm{pF} / \mu \mathrm{m}^{2}$
For PMOS device $\mu_{\mathrm{p}} C o x=40 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{T}_{\mathrm{p}}}=-0.8 \mathrm{~V}, \lambda=0.1 \mathrm{~V}^{-1}, \quad \gamma=0.4 \mathrm{~V} \mathrm{~V}$, Cox $=0.38 \mathrm{pF} / \mu \mathrm{m}^{2}$
For NPN/ PNP $\quad \beta=100,\left|\mathrm{~V}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}$, and $V_{t}=25 \mathrm{mV}, \alpha=1, I_{S}=10^{-12} \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$, Vce, sat $=0.2 \mathrm{~V}$
NOTE:
If not specified in the question,

- Ignore γ, λ in the drain current equation. Assume matched components wherever required
- Specify your assumptions. Justify your answers. Unless specified, assume all MOSFETs are biased in the saturation region. Label your sketches properly. All symbols have usual meaning.
- The body (B) terminals of all the PMOSFETs are connected to V_{DD}, NMOSFETs are connected to the ground.

Q1. (a) Consider the Circuit shown in Fig. 1.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=5 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{GSQ}}=2 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{Cox}(\mathrm{~W} / \mathrm{L})=0.5 \\
& \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=0.8 \mathrm{~V}, \lambda \approx 0 .
\end{aligned}
$$

I. Calculate the quiescent values $\mathbf{I}_{\mathbf{D Q}}$ and $\mathbf{V}_{\text {DSQ }}$.
II. Determine the low-frequency small signal voltage gain $\left(\mathbf{V}_{\mathbf{0}} / \mathbf{V}_{\mathbf{i}}\right)$.
III. If $\boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0} .1 \sin \boldsymbol{\omega} \boldsymbol{t} \mathbf{V}$, sketch and label the $\mathbf{i}_{\boldsymbol{o}}$ and $\mathbf{V}_{\mathbf{o}}$ waveforms properly with respect to time.

Q1. (b) For the circuit given below in Fig. 2:

$$
\beta=100, R_{1}=200 \mathrm{k} \Omega, R_{2}=200 \mathrm{k} \Omega, R_{E 1}=240 \Omega, R_{E 2}=20 \mathrm{k} \Omega, R_{C}=2 \mathrm{k} \Omega, V_{B E(O N)}=0.7 \mathrm{~V},
$$

$$
\mathbf{V}_{\mathrm{A}}=\infty, \mathbf{V}_{\text {Thermal }}=0.025 \mathrm{~V}
$$

I. Identify the circuit topology.
II. Calculate the $\mathbf{I}_{\mathbf{C Q}}$ and $\mathbf{V}_{\text {CEQ }}$.
III. Find small signal parameters $\mathbf{g}_{\mathbf{m}}$ and $\mathbf{r}_{\boldsymbol{\pi}}$.
IV. Draw and label the small signal model and calculate the low-frequency voltage gain ($\mathbf{V}_{\text {out }} / \mathbf{V}_{\mathrm{s}}$).
V. How will the $\mathbf{I}_{\mathbf{C Q}}$ change for the given circuit if the value of $\mathbf{R E}_{\mathbf{E}}=\mathbf{R E}_{\mathbf{E} 2}=\mathbf{0}$ in the circuit? Comment on the operating region of the amplifier after the above change.

Q2. Consider the 2-port network representation of a unilateral system shown in Fig. 3.

Fig. 3
Given ----

- When S_{1} closed and S_{2} closed: $V_{1}=\mathbf{0 . 5 V}, I_{1}=\mathbf{1 0 \mu A}$ and $I_{\mathbf{2}}=\mathbf{1 m A}$
- When S_{1} open and S_{2} open: $I_{2}=1 \mathrm{~mA}$ and $V_{2}=5 \mathrm{~V}$.
I. Find the h-parameter matrix. Also, Sketch and label the h-parameter model of the network.
II. Find the z-parameter matrix. Also, sketch and label the z-parameter model of the network.
III. If a signal source $\mathbf{V}_{\mathbf{i}}=\mathbf{0 . 5 V}$ is connected to port 1 of the z-parameter model and a load resistance of $\mathbf{2 5 k} \mathbf{\Omega}$ is connected to port 2 of the model. Now, calculate the following in $\mathbf{d B}$; voltage gain $\left(\mathbf{V}_{\text {out }} / \mathbf{V}_{\mathbf{i}}\right)$, current gain $\left(\mathbf{I}_{\mathbf{0}} / \mathbf{I}_{\mathbf{i}}\right)$ and Power gain.
[18 Marks]

Q3. Consider the circuit of Fig. 4. Ignore the body bias effect (Perform intuitive analysis)
Given: MOSFET: $\lambda=\mathbf{0 . 1} \mathrm{V}^{-1}, \mathbf{V}_{\mathrm{tn}}=\mathbf{1 V}, \boldsymbol{\mu}_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=\mathbf{1 0 0} \mu \mathrm{A} / \mathrm{V}^{\mathbf{2}}, \mathrm{V}_{\mathrm{ov}}=\mathbf{0 . 2 V}$
BJT: $V_{\text {BEon }}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$ and $\mathrm{V}_{\text {CEsat }}=0.2 \mathrm{~V}$

I. Identify the topology of stage $\mathbf{1}$ and stage $\mathbf{2}$.
II. Calculate the current ID1.
III. Calculate the voltage swing at nodes $\mathbf{V}_{\mathbf{x}}$ and $\mathbf{V}_{\text {out }}$.
IV. Sketch and label the small signal model.
V. Calculate the $\mathbf{G}_{\mathbf{m}}$ and $\mathbf{R}_{\text {out }}$ of Stage-1. Hence, find the gain $\mathbf{V}_{\mathbf{x}} / \mathbf{V}_{\text {in }}$ and $\mathbf{V}_{\text {out }} / \mathbf{V}_{\mathbf{x}}$. (Hint: Consider loading effect of stage 2 in calculations)
VI. Assume, node $\mathbf{V}_{\mathbf{x}}$ is connected to node \mathbf{B}. Now, calculate $\mathbf{G}_{\mathbf{m}}$ and $\mathbf{R}_{\mathbf{o u t}}$ of first stage (Hint: Consider loading effect of stage 2 in calculations)

Q4. Circuit shown in Fig. 5(a) is used to bias circuit shown in Fig. 5(b), and generate voltages $\mathbf{V}_{\text {B1 }}$, $\mathbf{V}_{\mathbf{B 2}}, \mathbf{V}_{\text {B3 }}$, using MOSFET transistors. Assume all the transistors are operating in active region.

- Given that the total power consumption of Fig 5(a) and Fig. 5(b) together is $\mathbf{7 5 0 0} \boldsymbol{\mu} \mathbf{W}$
- Assume $\left|\mathbf{V}_{\mathbf{T}}\right|=\mathbf{1 V}, \mathbf{V}_{\mathbf{o v}}=\mathbf{0 . 2} \mathbf{V}$ for all the transistors.

I. Determine the value of $\mathbf{I}_{\text {REF }}$ current.
II. Now, sketch the schematic of NMOS block (BLK2) in Fig. 5(a).
III. Draw the circuit (schematic) of PMOS block (BLK1) in Fig. 5(a). Hence, draw the complete circuit of Fig. 5(b) including biasing circuit.
IV. Now, for Fig. 5(b), compute DC values of voltages $\mathbf{V}_{\mathbf{B} 1}, \mathbf{V}_{\mathbf{B} 2}$ and $\mathbf{V}_{\mathbf{B 3}}$
V. Determine the value of $\mathbf{V}_{\mathbf{G S}}$ of transistor $\mathbf{M 5}$ shown in Fig. 5(a).

