Birla Institute of Technology and Science, Pilani ECE/EEE / INSTR F244 F244 Microelectronic Circuits Comprehensive Examination, II Semester, 2022-2023

<u>Note----(Specify your assumptions clearly.</u>)

 $\begin{array}{lll} \textit{Unless given specifically} \\ \textit{Take -- } & V_{\rm DD} = V_{\rm CC} = 3.3 \, \mathrm{V}, \\ \textit{For NMOS device} & \mu_n Cox = 140 \, \mu A/V^2, \, V_T = 0.7 \, \, \mathrm{V}, \, \lambda = 0.1 \, \, \mathrm{V}^{-1}, \ \text{Vov=0.2 V} \\ \textit{For PMOS device} & \mu_p Cox = 40 \, \, \mu A/V^2, \, V_T = - \, 0.7 \, \, \mathrm{V}, \, \lambda = \, 0.1 \, \, \mathrm{V}^{-1}, \ \text{Vov=0.2 V} \\ \textit{For NPN/ PNP device} & \beta = 100 \, \, \mathrm{V}, \, V_{\rm CE,SAT} = 0.2 \, \mathrm{V}, \, V_A = 100 \, \mathrm{V}, \, \mathrm{KT/q} = 25 \, \mathrm{mV}(\text{at room temp.}), \, \mathrm{Is} = 10^{-14} \, \mathrm{A}, \, \mathrm{V_{BE,ON}} = 0.6 \, \mathrm{V}, \, \alpha \approx 1 \\ \textit{NOTE:} \end{array}$

If not specified in question -----

- Ignore γ , λ in drain current equation. Bulk of nmos connected to ground and bulk of pmos connected to V_{dd}.
- Unless specified, assume all MOSFETs are biased in the active region All symbols have the usual meaning.

Answer all the sub-parts of a question in sequence and one place only. Clearly show the procedure used to arrive at the answer for full credit. Report the answers with proper units.

Q 1. Consider the Amplifier circuit given in Fig.1. Following values

are given for the circuit: $R_F = 100 \text{ K}\Omega$, $R_D = 5 \text{ K}\Omega$, $R_L = 5 \text{ K}\Omega$, $K_n' = 20 \mu A/V^2$, $L = 10 \mu m$, $W = 200 \mu m$, $V_A = 100 \text{ V}$,

 $V_t = 2 V$. Assume all the capacitors are open for DC bias and short

at given signal frequency.

Determine the following:

Time: 60 minutes

- *a*) DC Operating point $(I_{DQ}, V_{GSQ}, V_{DSQ})$
- b) Input Impedance and Output Impedance
- c) Voltage gain and Current gain

Q 2. (A) Consider the circuit of Fig. 2

Given, $|V_{tn}| = |V_{tp}| = 0.6V$, $\mu_n C_{ox} = 200 \,\mu A/V^2$, $\mu_p C_{ox} = 60 \,\mu A/V^2$. ---The channel length of all transistors=1 μ m. ---The minimum allowed drain voltage at M₁ and M₄ are -1.3V and 1.3V, respectively.

Find the widths of M₁, M₂, M₄.

Q2(B) For a p-channel long MOSFET, threshold Voltage (V_T) = -1 V, W = 20 μ m, L = 2 μ m. Given, $\mu_p = 200 \text{ cm}^2/\text{V-s}$, C_{ox} = 3.5 × 10⁻⁷ F/cm². The source and body are connected to the ground.

Calculate the drain current for following conditions----

a) at $V_G = -4 V$, $V_D = -1 V$. b) at $V_G = -3 V$, $V_D = -3 V$.

[20 marks]

[20 marks]

Total Marks: 70

Part-B (Open Book)

Use data/parameters given in part (A)

NOTE-- There are **FOUR** questions. Answer all the sub-parts of a question in sequence and one place only. Clearly show the procedure used to arrive at the answer for full credit. Report the answers with proper units.

Q1. Consider the circuit shown in Fig 1., where the applied input

voltages are:

 $vin_1 = 5mv sinwt + 1.4V$ and $vin_2 = 10mv sinwt + 1.4V$.

--Transistors M1, M2 has Vov= 0.2 V. The value of Iss=90 uA

-- Iss is implemented with basic current mirror with large Rss.

--Assume perfect matching of transistors,

Time: 2 hrs.

--Resistors with $R_{D1} = R_{D2} = R_D = 40 \text{ K}\Omega$.

- a) Now, analyze the given circuit and calculate the dc voltage at nodes P and X.
- b) Calculate the differential mode gain, (Adm), for the given circuit.
- c) Determine common mode component of each input signal (vin1 and vin2) and differential mode component of each input signal (vin1 and vin2)
- d) Now, determine a.c value of total **Vout** tapped between vout1 & vout2 nodes. (Vout = vout1-vout2).
- e) Finally, draw a labelled plot for Vout (t) vs. time. (show both DC and AC components)

[19 marks]

- Q2. (A) Consider Fig 2a Given: W/L= 25, R₁ ll R₂ = 100k Ω , V_{TN} = 1V, I_{DQ} = 2mA, R_D = 2.5k Ω , Vdd=12 V
- a) Draw the Load line of the given circuit and mark the maximum value of I_D and V_{DS} on the x-axis and y-axis, respectively.
- **b**) Find the value of V_{DSQ} and V_{GSQ} in such a way that the Q point is in the **middle** of the saturation (active) region.
- c) Find the value of \mathbf{R}_1 and \mathbf{R}_2 .

Q2 (B) Consider Fig. 2b of cascode amplifier, Vdd/ Vcc=12 V

- d) Sketch and label the small-signal (low frequency) equivalent model for the given amplifier. (Assuming $\lambda \Rightarrow 0$)
- e) Find out the gain expression of the above amplifier.Compare the gain expression with a conventionalCommon emitter/base amplifier.

[Total 19 marks]

- Q3. Consider the circuit given below in Fig. 3.
- The Following parameters are given:

$$\begin{split} V_{ov} &= 0.2V, \, \lambda = 0.01V^{\text{-1}}, \ C_{gs(1,2)} = 10pF, \\ C_{gd(1,2)} &= 1pF, \, C_{db(1,2)=}2pF, \, C_{sb(1,2)} = 2pF \text{ and} \\ R_s << 1/g_m \end{split}$$

Ignore the capacitances of the basic current mirror current source M3

- a) Sketch and label the high frequency model of the amplifier.
- b) Identify the number of dominant poles and zeros of the amplifier.
- c) Calculate the frequency (in rad./s) of the dominant poles and zeros of the amplifier.
- d) Calculate the **phase** of the amplifier at $\omega = 10$ K rad/s.
- e) Plot and label the **Bode magnitude response** of the amplifier (Use corner plot) qualitatively. Mark the values of low frequency voltage gain (**vout/vin**) and the dominant poles and zeros along with UGB on it.
- **f**) Calculate the unity gain frequency (**UGB in rad./s**)

[17 marks]

- Q4. Consider the circuit given in **Fig. 4**.
- The bias current I5=25uA, Iss=200 uA.

For all devices take, V(overdrive) = 0.2 V,

 λ =0.01 V⁻¹ Assume load capacitance at output is

 $C_L=1nF$, Rsig is small

 $R_p=1K\Omega$, $R_F=1M\Omega$, $R_S=1K\Omega$

Neglect body effect in calculations.

- a) Identify the type of feedback in this amplifier.
 Hence determine type of input and output signal of feedback amplifier
- b) Determine the **open loop** parameters A_o , R_{out} at low frequency
- c) Determine closed loop parameters: A_{0f} , R_{inf} , R_{outf} , feedback factor (β) at low frequency
- d) Assuming that **output node pole** is dominant pole, determine the **-3dB frequency**, and **UGB** (unity gain bandwidth) in both **open loop** and **closed loop** condition.
- Also determine gain-crossover frequency (Gx) in closed loop mode.

