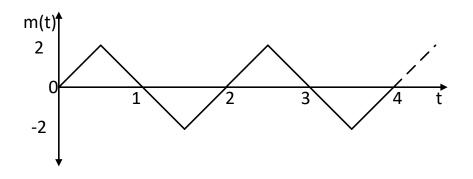

Birla Institute of Technology & Science, Pilani, Rajasthan First Semester 2022-2023 Mid-Semester Exam (Close Book)

EEE F311 Communication Systems

Date: 05-11-2022, Duration: 90 Minutes, Maximum Marks: 50


Make suitable assumptions, if any. Put the final answers in a box.

- 1. (a) $m(t) = 2 + 4 \sin 20\pi t$ amplitudes modulates a carrier signal $c(t) = 6 \cos 100\pi t$. Find the power efficiency (in %) of the modulated AM signal. [Marks: 2]
 - (b) A NBFM signal has a carrier frequency of 100 Hz and frequency deviation of 2 Hz. Find the frequency deviation if the NBFM is passed through a mixer at 50 Hz and multiplier having a frequency doubler. [Marks: 2]
 - (c) A broadcasting system has a spectrum in the range of 2000KHz-4000KHz and employs superhetrodyne receiver. Find the minimum IF frequency such that image frequency falls beyond the allocated spectrum. [Marks: 2]
 - (d) Draw the Costas loop for the demodulation of DSB-SC signal. [Marks: 2]
 - (e) A message bit stream 10110 is line encoded using bipolar NRZ to generate pulse stream m(t). Sketch m(t) considering a rectangular pulse width of $\frac{1}{5}$ second and amplitude 1. Also sketch $m(t) \cos 4\pi t$ for 1 second. [Marks: 2]
- 2. The signal m(t) in the following figure has a bandwidth 10 Hz.

- (a) Find the signal $y_1(t)$ in terms of the input signal m(t). [Marks: 3]
- (b) Find the output signal $y_2(t)$ in terms of the input signal m(t). [Marks: 3]
- (c) Apply synchronous detector on $y_2(t)$. [Marks: 4]

- 3. An FM signal is given by $x(t) = 50 \cos(2000\pi t + 2\sin 200\pi t)$ with the parameter $k_f = 2 \text{ Hz/Volt.}$ [Marks: 2×5]
 - (a) Find the message signal m(t).
 - (b) Find the modulation index β of the FM signal.
 - (c) Find the bandwidth of the FM signal using Carson's rule.
 - (d) An alternate representation of $x(t) = 50 \cos(2000\pi t + 2\sin 200\pi t)$ is given by $x(t) = \sum_{n=-\infty}^{\infty} 50J_n(\beta) \cos(2\pi (f_c + nf_m)t)$, where f_c is the carrier frequency and f_m is the message frequency and β is the modulation index. Plot |X(f)| (in terms of Bessel function) for n = 0 and n = 1 clearly labeling the x-axis and y-axis.
 - (e) The signal x(t) is passed through a channel $h(t) = 100 sinc(100\pi t) \cos 2000\pi t$. Find the output power in terms of Bessel function.
- 4. A periodic message signal m(t) (as shown in figure) is to be converted to binary bit-stream using PCM and DM techniques.

- (a) The signal is sampled at a rate of 1000 samples per second and encoded using the PCM. Find the minimum bandwidth required to transmit the data to achieve an SQNR of 256.
 [Marks: 5]
- (b) Find the minimum step-size of the DM to avoid slope-over load condition achieving the same data rate transmission as that of the PCM (as obtained in part (a)). [Marks: 5]
- 5. (a) Use the time-domain criteria to show that the pulse $p(t) = \frac{\cos(\pi R_s t)}{1 (2R_s t)^2} sinc(\pi R_s t)$ satisfies the Nyqist criteria for zero ISI. [Marks: 3]
 - (b) How much time (in seconds) will be required to transfer a movie data of 1 GB over a bandwidth of 10 MHz using Nyquist pulse $p(t) = \frac{\cos(\pi R_s t)}{1 (2R_s t)^2} sinc(\pi R_s t)$ with NRZ binary polar encoding, where R_s denotes the transmission rate. Take 1 GB = 10⁹ bits. [Marks: 3]
 - (c) A message signal $m(t) = \sum p(t nT)$, where $p(t) = \frac{\cos(\pi \alpha R_s t)}{1 (2\alpha R_s t)^2} sinc(\pi R_s t)$ is transmitted with pulse rate satisfying Nyquist criterion for zero-ISI. Sketch the frequency response of the pulse i.e., P(f) (both-sided) for n = 0 and n = 1 in the same plot satisfying the Nyqist criteria for zero ISI for (i) $\alpha = 0$ and (ii) $\alpha = 1$. [Marks: 2+2]