Birla Institute of Technology \& Science, Pilani, Rajasthan
 First Semester 2022-2023 Comprehensive Exam (Open Book)

EEE F311 Communication Systems

Date: 30-12-2022, Duration: 3 Hours, Maximum Marks: 60

1. (a) Find the FM bandwidth (using Carson's rule) for a message signal $m(t)=200 \operatorname{sinc}(200 \pi t)$ with $k_{f}=1 \mathrm{vol} / \mathrm{Hz}$. Take carrier signal as $10 \cos (10000 \pi t)$.
(b) Find the modulation index for an amplitude modulated signal is given as $x(t)=(25+$ $\left.\sum_{i=1}^{10} \cos 200 i \pi t\right) \cos 200000 \pi t$.
(c) Draw minimum number of orthonormal basis signal for the signal set as given below:

(d) For a WSS noise process x, the double-sided noise PSD is given as $S_{x}(f)=N_{0} / 2$. Find the autocorrelation of the output process y as shown in the figure. Take $R=10 \Omega$ and $C=1 \mathrm{~F}$.

(e) Find the channel capacity with transition probabilities as shown in the figure. Assume equally probable input i.e. $P\left(x_{1}\right)=P\left(x_{2}\right)=1 / 2$.

(f) Find mutual information of a continuous channel $y=x+n$ if the output signal y is uniformly distributed $y \sim U(-2,2)$ and the additive noise n is exponentially distributed with $\operatorname{PDF} f_{n}(x)=e^{-x}, x \geq 0$.
2. (a) There are two messages with probabilities 0.9 and 0.1 . Find the coding efficiency (in $\%$ upto two decimal points without rounding off) with the third-order source extension using Huffman encoding. [Marks: 6]
(b) The generator matrix for the $(7,3)$ linear block code is given as $\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]$. List all the code words and determine the error-detecting capability of the code. Also decode the data from the received codes 0101010, 1101011, and 1110111. [Marks: 6]
3. A signal $m(t)=10 \operatorname{sinc}^{2}(10 \pi t)$ is to be transmitted over an ideal channel with impulse response $h(t)$ using both analog and digital schemes.
(a) For analog transmission, the transmitter uses DSB-SC at a carrier frequency of 500 KHz and the receiver uses synchronized detector. The receiver is impacted by AWGN with double-sided passband PSD $N_{0} / 2=4$. Find the noise power and the SNR at the output of the synchronized detector. [Marks: 6]
(b) For digital transmission, the transmitter uses baseband polar signaling and the receiver uses the matched filtering. The receiver is impacted by AWGN with double-sided PSD $N_{0} / 2=4$. find the signal power at the output of the matched filter. [Marks: 6]
4. A transmitter uses 8-QAM constellation (as shown in the figure) for digital communications. The distance between adjacent symbols is 2 and the symbols are equi-probable. At the receiver, the symbols are disturbed by the AWGN modeled as $n_{x} \sim N(0,1)$ and $n_{y} \sim N(0,1)$.

(a) Determine the SER in terms of Q function without any approximation. [Marks: 6]
(b) If the noise component in the y -direction is ignored (i.e., $n_{y}=0$), determine the SER in terms of Q function without any approximation. [Marks: 6]
5. A wireless communication link over free-space is to be established from your hostel room to a nearby base station situated at a distance of 95 m . The assigned carrier frequency is 100 MHz and the channel bandwidth is 1 MHz . The antenna gain for transmitter and receiver are equal at 0 dB , i.e. $G_{t}=G_{r}=0 \mathrm{~dB}$. The information source is voice signal of a 3 minutes duration. The A/D uses 4-bit quantizer at the minimum sampling rate. You are given the task to design a digital transmitter to transmit the data in 1 second. The AWGN has a PSD $N_{0}=-100$ $\mathrm{dBm} / \mathrm{Hz}$ and the signal power $P_{t}=30 \mathrm{dBm}$.
(a) Determine the source information in bits? [Marks: 4]
(b) Determine is the channel capacity in bps? [Marks: 4]
(c) Determine the maximum constellation size used. [Marks: 4]
