Birla Institute of Technology and Science, Pilani ECE/EEE F311 Communication Systems First Semester 2023-2024 (09-10-2023) Mid-Semester Test (Closed Book)

Maximum Marks: 75 Duration: 90 minutes

- There are four questions. All questions are compulsory.
- Put important steps and final answer in a rectangular box.
- Answer all the parts of a question at the same place.
- A formula sheet consisting of FT, FS, and trigonometric identities is provided.
- Q1. (a) Find the power efficiency and modulation index for an AM signal $x(t) = \cos 220\pi t + 4\cos 200\pi t + \cos 180\pi t$. [4 Marks]
 - (b) A message signal m(t) with a bandwidth 10 Hz and average power 2 Watts amplitude modulates a carrier signal $\cos(200\pi t)$. Find the average transmit power and the bandwidth for both DSB-SC and LSSB modulated signals. [4 Marks]
 - (c) Find the Hilbert transform of $sinc(20\pi t)$. [4 Marks]
 - (d) Draw a block diagram of an FM demodulator. [4 Marks]
 - (e) Find the autocorrelation function $R_m(\tau)$ for the signal $m(t) = e^{-t}u(t)$. [4 Marks]
- Q2. A message signal m(t) of bandwidth B Hz phase modulates a carrier $c(t) = A\cos(2\pi f_c t)$ with a phase deviation constant k_p rad/volt. The PM modulated signal x(t) is passed through a bandpass filter having a center frequency f_c Hz and bandwidth 4B Hz.
 - (a) Find the time-domain signal y(t) at the output of the bandpass filter. [12 Marks]
 - (b) Assuming $m(t) = 100 sinc(100\pi t)$, $c(t) = 10 cos(2000\pi t)$, and $k_p = 2$ rad/volt, sketch the magnitude spectrum |Y(f)| (in the positive frequency axis only). [8 Marks]

- Q3. (a) Two message signals $m_1(t)$ and $m_2(t)$ each of bandwidth 10 Hz amplitude modulates a carrier signal using the balanced ring modulator, as shown in the figure. Find the signal x(t) at the output of the channel. [8 Marks]
 - (b) From part (a), design a superhetrodyne receiver for the received signal x(t). Provide the specifications of each block to detect the message signal $m_1(t)$. Also find signals at the output of each block. Assume that the message signal $m_1(t)$ has both positive and negative amplitude values. Take IF frequency as 200 Hz. [12 Marks]

Q4. The frequency spectrum M(f) of a message signal m(t) is given in the figure. The message signal m(t) amplitude modulates a carrier $\cos(20\pi t)$. Find the time-domain expression for the USSB modulated signal. [15 Marks]

