Birla Institute of Technology and Science, Pilani ECE/EEE F311 Communication Systems First Semester 2023-2024 (09-10-2023)
 Mid-Semester Test (Closed Book)

Maximum Marks: 75
Duration: 90 minutes

- There are four questions. All questions are compulsory.
- Put important steps and final answer in a rectangular box.
- Answer all the parts of a question at the same place.
- A formula sheet consisting of FT, FS, and trigonometric identities is provided.

Q1. (a) Find the power efficiency and modulation index for an AM signal $x(t)=\cos 220 \pi t+$ $4 \cos 200 \pi t+\cos 180 \pi t$. [4 Marks]
(b) A message signal $m(t)$ with a bandwidth 10 Hz and average power 2 Watts amplitude modulates a carrier signal $\cos (200 \pi t)$. Find the average transmit power and the bandwidth for both DSB-SC and LSSB modulated signals. [4 Marks]
(c) Find the Hilbert transform of $\operatorname{sinc}(20 \pi t)$. [4 Marks]
(d) Draw a block diagram of an FM demodulator. [4 Marks]
(e) Find the autocorrelation function $R_{m}(\tau)$ for the signal $m(t)=e^{-t} u(t)$. [4 Marks]

Q2. A message signal $m(t)$ of bandwidth $B \mathrm{~Hz}$ phase modulates a carrier $c(t)=A \cos \left(2 \pi f_{c} t\right)$ with a phase deviation constant $k_{p} \mathrm{rad} / \mathrm{volt}$. The PM modulated signal $x(t)$ is passed through a bandpass filter having a center frequency $f_{c} \mathrm{~Hz}$ and bandwidth $4 B \mathrm{~Hz}$.
(a) Find the time-domain signal $y(t)$ at the output of the bandpass filter. [12 Marks]
(b) Assuming $m(t)=100 \operatorname{sinc}(100 \pi t), c(t)=10 \cos (2000 \pi t)$, and $k_{p}=2 \mathrm{rad} / \mathrm{volt}$, sketch the magnitude spectrum $|Y(f)|$ (in the positive frequency axis only). [8 Marks]

Q3. (a) Two message signals $m_{1}(t)$ and $m_{2}(t)$ each of bandwidth 10 Hz amplitude modulates a carrier signal using the balanced ring modulator, as shown in the figure. Find the signal $x(t)$ at the output of the channel. [8 Marks]
(b) From part (a), design a superhetrodyne receiver for the received signal $x(t)$. Provide the specifications of each block to detect the message signal $m_{1}(t)$. Also find signals at the output of each block. Assume that the message signal $m_{1}(t)$ has both positive and negative amplitude values. Take IF frequency as 200 Hz . [12 Marks]

Q4. The frequency spectrum $M(f)$ of a message signal $m(t)$ is given in the figure. The message signal $m(t)$ amplitude modulates a carrier $\cos (20 \pi t)$. Find the time-domain expression for the USSB modulated signal. [$\mathbf{1 5}$ Marks]

