Birla Institute of Technology and Science, Pilani

Mid-semester test (close book), second semester 2016-17

Power Systems (EEE F312)

Max. Marks - 75

Duration- 90 minutes

March 10, 2017

Instructions: Additional answer sheet will not be provided; Write your assumptions clearly with justifications;

Doubts are a part of questions. So, no clarification please!

- Q1. A three phase, transmission line is delivering 25 MVA at 0.8 lagging power factor to a balanced load at 132 kV. Find the voltage regulation with and without resistive component of the transmission line and compare the % change in voltage regulation for the following conditions:
 - a) The transmission line is a short transmission line (20-50km range)
 - b) The transmission line a medium transmission line (100-250km range) represented as nominal-T method and nominal- π method

Hint: You can use approximate method with proper justification. Note: Use only Bar chart representation for comparison purpose [30]

Q2. A 275 kV transmission line has the following line constants;

 $A = 0.85 \ \ 5^{\circ}; \quad B = 200 \ \ 75^{\circ}$

- a) Determine the power at unity power factor that can be received if the voltage profile at each end is to be maintained at 275 kV.
- b) Determine the rating of the compensation equipment required if the load is 150 MW at unity power factor with the same voltage profile as in part (a). [15]
- Q3. Consider the synchronous machine defined in the following table:

Three phase synchronous machine data		
Ratings		
$V_{line} = 480 \mathrm{V}$	$I_{line} = 120.3 \mathrm{A}$	$S_{3ph} = 100 \text{kVA}$
Stator frequency = 60 Hz	Rotor type: SALIENT	
Synchronous speed = 1800 rpm	No. of poles $= 4$	DC excitation voltage = $125V$
Equivalent circuit values (R , X in Ω)		
R <i>a</i> = 0.0;	$R_F = 7.8125$ X_c	$X_q = 2.543$ $X_q = 1.647$

Plot the power transfer with varying rotor angle (δ) when (a) excitation emf (E_f) is 0.985 pu and (b) excitation emf (E_f) is 1.80 pu. Calculate the average % increase in power transfer due to saliency of rotor in the interval (45 $< \delta < 90^{\circ}$).

Note: Marks will be awarded only when the values of power transfer are correct at $\delta=45^{\circ}$, $\delta=90^{\circ}$ and $\delta=135^{\circ}$. [30]