Birla Institute of Technology and Science, Pilani

Mid-semester test (close book), second semester 2016-17
Power Systems (EEE F312)

Instructions: Additional answer sheet will not be provided; Write your assumptions clearly with justifications;
Doubts are a part of questions. So, no clarification please!

Q1. A three phase, transmission line is delivering 25 MVA at 0.8 lagging power factor to a balanced load at 132 kV . Find the voltage regulation with and without resistive component of the transmission line and compare the $\%$ change in voltage regulation for the following conditions:
a) The transmission line is a short transmission line (20-50km range)
b) The transmission line a medium transmission line (100-250km range) represented as nominal- \boldsymbol{T} method and nominal- $\boldsymbol{\pi}$ method

Hint: You can use approximate method with proper justification. Note: Use only Bar chart representation for comparison purpose

Q2. A 275 kV transmission line has the following line constants;
$A=0.85\left\llcorner 5^{\circ} ; ~ B=200\left\llcorner 75^{\circ}\right.\right.$
a) Determine the power at unity power factor that can be received if the voltage profile at each end is to be maintained at 275 kV .
b) Determine the rating of the compensation equipment required if the load is 150 MW at unity power factor with the same voltage profile as in part (a).
[15]
Q3. Consider the synchronous machine defined in the following table:

Three phase synchronous machine data

Ratings		
$V_{\text {line }}=480 \mathrm{~V}$	$I_{\text {line }}=120.3 \mathrm{~A}$	$S_{3 p h}=100 \mathrm{kVA}$

Stator frequency $=60 \mathrm{~Hz}$
Synchronous speed $=1800 \mathrm{rpm}$
No. of poles $=4$
DC excitation voltage $=125 \mathrm{~V}$

Equivalent circuit values (R, X in Ω)
$\boldsymbol{R} \boldsymbol{a}=0.0 ;$
$\boldsymbol{R}_{\boldsymbol{F}}=7.8125$
$X_{d}=2.543$
$X_{q}=1.647$

Plot the power transfer with varying rotor angle ($\boldsymbol{\delta}$) when (a) excitation emf $\left(E_{f}\right)$ is 0.985 pu and (b) excitation emf $\left(E_{f}\right)$ is 1.80 pu. Calculate the average $\%$ increase in power transfer due to saliency of rotor in the interval $\left(45^{\circ}<\boldsymbol{\delta}<\mathbf{9 0}{ }^{\circ}\right)$.

Note: Marks will be awarded only when the values of power transfer are correct at $\delta=45^{\circ}, \delta=90^{\circ}$ and $\delta=$ 135°.

