Birla Institute of Technology and Science Pilani (Rajasthan) **Department of Electronics and Electrical Engineering** Analog Digital VLSI Design (EEE/INSTR F313) **MID TERM EXAM**

Date : 13/10/2017 Time:90 min

Closed book

Max.Marks:80

General Instructions to the candidate

- Please write your answers legibly and neatly in the answer booklet provided only.
- Symbols, constants, terminology used have their usual meaning unless specified specially. •
- There are a total of **FOUR** questions and all are compulsory. Each carries marks as indicated. •
- Answer the *subparts* of a question at one place and in the order in which they appear.
- Preferably start each question on a fresh page however sub parts can be written on same side.

Common data: Use the following common data if not mentioned specifically in the question

Take Vdd=2.5 V, V_{T0N}=0.4V, V_{T0P} = -0.43V, R_{nmos}= 13kohm/ (W/L), R_{pmos}= 31kohm/ {W/L}, Lmin=250 nm, $\lambda n=0.06 \text{ V}^{-1}$, $\lambda p=0.1 \text{ V}^{-1}$, $u_n \text{Cox}=115 \text{ uA}/\text{ V}^2$, $u_p \text{Cox}=30 \text{ uA}/\text{ V}^2$

- Use square law current equation unless specifically mentioned. Use lambda based design rules unless specially mentioned.
- Neglect body effect, channel length modulation if not mentioned specifically.
- The body of all PMOS is tied to V_{DD} while all NMOS is tied to ground unless specially mentioned.
- Q1 A sequential state machine was fabricated in a 10 µm technology and was able to operate at 100 MHz, consuming 10 watts using a 2 V power supply.
- Determine the maximum frequency of operation and power consumption of the circuit if the a) circuit is redesigned using 5 µm technology and operating at same 2 V supply voltage?
- Determine the maximum frequency of operation and power consumption of the circuit at 5 µm b) technology if operating at supply voltage of 1 V in part (a)?
- For part (b), what supply voltage should be used to fix the power consumption at 5 watts? At c) what speed would the state machine operate now?

[20]

Q2 Consider a CMOS inverter with (W/L)p=1/1, (W/L)n=4/1. Assume Cwire=0.2pF, V_{DD}=5V, $\mu_{P}Cox=200\mu A/V^{2}, \mu_{N}Cox=500\mu A/V^{2}, |Vtp|=Vtn=1V$

For load capacitance calculation, use capacitances in Table 1 in addition to Cwire.

- Compute the values of V_{OL}, V_{OH} voltage levels for reduced input voltage swing that varies a) between 0V to 3.3V
- Now assume that Vin can swing rail-to-rail (0V to $V_{DD} = 5V$.) Find t_{pLH} & t_{pHL} assuming an b) ideal step input by averaging the appropriate currents at the beginning and end of the output transition. Use capacitances in Table 1 in addition to Cwire.
- Find the dynamic power consumption at the output, given an input switching frequency of 100 c) MHz.

Capacitor (pF)	PMOS	NMOS
C_{gs}	0.05	0.2
C_{gd}	0.05	0.2
C_{db}	0.1	0.4
C_{sb}	0.1	0.4

[20]

- Q3 Consider the inverter circuit in Fig. 1 where both load and driver are enhancement type long channel n-MOS transistors. Both the n-MOS transistors are identical except $W_{Driver} = 8W_{Load}$.
 - a) Calculate V_{OH} , and V_{IL} of the inverter. Also calculate V_{OL} when input (V_{in}) is V_{OH} .
 - b) What is the noise margin for low signal level? Consider, $V_{DD}=2.5$ V, $V_{Tn}=0.4$ V, $\gamma=0$ and $\lambda=0$.

[20]

- Q4 A resistor of $1K\Omega$ is to be fabricated using n-type diffusion. The n-type layer has a sheet resistance of 100Ω per square. The width allowed for n-type layer is 1 µm. Also, 0.5 µm extension of metal and n-type layer is required over the contact window. [Note: size of contact pad = 1 µm x 1 µm]
 - a) Determine the length of n-type diffusion layer required.
 - b) Sketch and label the layout of the n-type layer. Include the area for placing contact cuts in your layout.
 - c) Now, sketch and label the layout of contact cuts to be placed on the n-type layer.
 - d) Also, sketch & label the layout of metal layer to be placed over the n-type layer.

[20]