Birla Institute of Technology and Science Pilani (Rajasthan)

Department of Electronics and Electrical Engineering
Analog Digital VLSI Design (EEE/INSTR F313)
Date : 13/10/2017
Time:90 min
MID TERM EXAM
Closed book

General Instructions to the candidate

- Please write your answers legibly and neatly in the answer booklet provided only.
- Symbols, constants, terminology used have their usual meaning unless specified specially.
- There are a total of FOUR questions and all are compulsory. Each carries marks as indicated.
- Answer the subparts of a question at one place and in the order in which they appear.
- Preferably start each question on a fresh page however sub parts can be written on same side.

Common data: Use the following common data if not mentioned specifically in the question
Take Vdd=2.5 V, $\mathrm{V}_{\text {Ton }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {Top }}=-0.43 \mathrm{~V}, \mathrm{R}_{\text {nmos }}=13 \mathrm{kohm} /(\mathrm{W} / \mathrm{L}), \mathrm{R}_{\mathrm{pmos}}=31 \mathrm{kohm} /\{\mathrm{W} / \mathrm{L})$, $\operatorname{Lmin}=250 \mathrm{~nm}, \lambda \mathrm{n}=0.06 \mathrm{~V}^{-1}, \lambda \mathrm{p}=0.1 \mathrm{~V}^{-1}, \mathrm{u}_{\mathrm{n}} \mathrm{Cox}=115 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{u}_{\mathrm{p}} \mathrm{Cox}=30 \mathrm{uA} / \mathrm{V}^{2}$

- Use square law current equation unless specifically mentioned. Use lambda based design rules unless specially mentioned.
- Neglect body effect, channel length modulation if not mentioned specifically.
- The body of all PMOS is tied to $V_{D D}$ while all NMOS is tied to ground unless specially mentioned.

Q1 A sequential state machine was fabricated in a $10 \mu \mathrm{~m}$ technology and was able to operate at 100 MHz , consuming 10 watts using a 2 V power supply.
a) Determine the maximum frequency of operation and power consumption of the circuit if the circuit is redesigned using $5 \mu \mathrm{~m}$ technology and operating at same 2 V supply voltage?
b) Determine the maximum frequency of operation and power consumption of the circuit at $5 \mu \mathrm{~m}$ technology if operating at supply voltage of 1 V in part (a)?
c) For part (b), what supply voltage should be used to fix the power consumption at 5 watts? At what speed would the state machine operate now?

Q2 Consider a CMOS inverter with $(\mathrm{W} / \mathrm{L}) \mathrm{p}=1 / 1,(\mathrm{~W} / \mathrm{L}) \mathrm{n}=4 / 1$. Assume Cwire $=0.2 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mu_{\mathrm{P}} \mathrm{Cox}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{N}} \mathrm{Cox}=500 \mu \mathrm{~A} / \mathrm{V}^{2},|\mathrm{Vtp}|=\mathrm{Vtn}=1 \mathrm{~V}$
For load capacitance calculation, use capacitances in Table 1 in addition to Cwire.
a) Compute the values of $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$ voltage levels for reduced input voltage swing that varies between 0 V to 3.3 V
b) Now assume that Vin can swing rail-to-rail (0 V to $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.) Find $\mathrm{t}_{\mathrm{pLH}} \& \mathrm{t}_{\mathrm{pHL}}$ assuming an ideal step input by averaging the appropriate currents at the beginning and end of the output transition. Use capacitances in Table 1 in addition to Cwire.
c) Find the dynamic power consumption at the output, given an input switching frequency of 100 MHz.

Capacitor $(\overline{\mathrm{pF}})$	PMOS	NMOS
$C_{g s}$	0.05	0.2
$C_{g d}$	0.05	0.2
$C_{d b}$	0.1	0.4
$C_{s b}$	0.1	0.4

Table . 1

Q3 Consider the inverter circuit in Fig. 1 where both load and driver are enhancement type long channel n-MOS transistors. Both the n-MOS transistors are identical except $W_{\text {Driver }}=8 \mathrm{~W}_{\text {Load }}$.
a) Calculate V_{OH}, and $\mathrm{V}_{\text {IL }}$ of the inverter. Also calculate V_{OL} when input $\left(\mathrm{V}_{\text {in }}\right)$ is V_{OH}.
b) What is the noise margin for low signal level? Consider, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Tn}}=0.4 \mathrm{~V}, \gamma=0$ and $\lambda=0$.

Fig. 1

Q4 A resistor of $1 \mathrm{~K} \Omega$ is to be fabricated using n-type diffusion. The n-type layer has a sheet resistance of 100Ω per square. The width allowed for n -type layer is $1 \mu \mathrm{~m}$. Also, $0.5 \mu \mathrm{~m}$ extension of metal and n-type layer is required over the contact window. [Note: size of contact pad $=1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m}$]
a) Determine the length of n-type diffusion layer required.
b) Sketch and label the layout of the n-type layer. Include the area for placing contact cuts in your layout.
c) Now, sketch and label the layout of contact cuts to be placed on the n-type layer.
d) Also, sketch \& label the layout of metal layer to be placed over the n-type layer.

