Q1. For the differential amplifier shown below in figures 1 and 2, assume that the (W/L) value of each transistor $(100 \mu \mathrm{~m} / 1 \mu \mathrm{~m})$. Do calculations for figure 1 and figure 2 separately. Use $\mathrm{V}_{D D}=1.5 \mathrm{~V}$.
(a) Find the maximum input common mode voltage, $v_{I C}(\max)$ and the minimum input common mode voltage, $v_{I C}(\min)$. Keep all transistors in saturation for this problem.
(b) What is the input common mode voltage range, ICMR?
(c) Find the small signal voltage gain, $v_{o} / v_{i n}$, if $v_{i n}=v_{1}-v_{2}$.
(d) If a 10 pF capacitor is connected to the output to ground, what is the -3 dB frequency for $V_{o}(j \omega) / V_{\text {in }}(j \omega)$ in Hertz? (Neglect any device capacitance.)
(e) Out of figure 1 and 2, which is better amplifier? Why?

Figure 1: Q1.1

Figure 2: Q1. 2
(Marks:4+2+4+4+2)

Q2. Find the slew rate, SR, of the differential amplifier shown in Figure 3 where the output is differential. Repeat this analysis if the two current sources, $0.5 I_{S S}$, are replaced by resistors of R_{L}.
(Marks:2+2)

Figure 3: Q2

Q3. Design a two-stage op amp based on the topology shown in figure 4. Assume a power budget of 6 mW , a required output swing of 2.5 V , and $\mathrm{L}=0.5 \mu \mathrm{~m}$ for all devices. Use $\mathrm{V}_{D D}=3 \mathrm{~V}$.
(a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to M_{5} and M_{6}, determine $(\mathrm{W} / \mathrm{L})_{5}$ and $(\mathrm{W} / \mathrm{L})_{6}$. Note that the gate-source capacitance of M_{5} is in the signal path, whereas that of M_{6} is not. Thus, M_{6} can be quite a lot larger than M_{5}.
(b) Calculate the small-signal gain of the output stage.
(c) With the remaining 1 mA flowing through M_{7}, determine the aspect ratio of M_{3} (and M_{4}) such that $\mathrm{V}_{G S 3}=\mathrm{V}_{G S 5}$. This is to guarantee that if $\mathrm{V}_{\text {in }}=0$ and hence $\mathrm{V}_{X}=\mathrm{V}_{Y}$, then M_{5} carries the expected current.
(d) Calculate the aspect ratios of M_{1} and M_{2} such that the overall voltage gain of the op amp is equal to 500 .

Figure 4: Q3
Given : NMOS: $\mu_{n} C_{o x}=134 \mu A / V^{2}, \lambda_{n}=0.1 V^{-1}$ for $\mathrm{L}=0.5 \mu m, \mathrm{~V}_{t n}=0.7 \mathrm{~V}$
PMOS: $\mu_{p} C_{o x}=38 \mu A / V^{2}, \lambda_{p}=0.2 V^{-1}$ for $\mathrm{L}=0.5 \mu m, \mathrm{~V}_{t p}=-0.8 \mathrm{~V}$
(Marks:4+4+4+4)
Q4. An nMOS transistor is fabricated with the following physical parameters: $W=10 \mu m, L_{M}=1.5 \mu m$ (Mask length), $L_{D}=0.25 \mu m$. Calculate the oxide related capacitance, $\mathrm{c}_{g d}, \mathrm{C}_{g s}$ and $\mathrm{c}_{g b}$ for all three regions of operations. Assume oxide thickness of $t_{o x}=200 \AA$.
(Marks:9)
Given : $\varepsilon_{o x}=3.9 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, \varepsilon_{S i}=11.7 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, q=1.6 \times 10^{-19} \mathrm{C}, \mathrm{kT} / \mathrm{q}=0.026 \mathrm{~V}$, $n_{i}=1.45 \times 10^{10} \mathrm{~cm}^{-3}$

Q5. For symmetric CMOS inverter if $\mathrm{NM}_{L}=1.2 \mathrm{~V}, \mathrm{~V}_{I H}=1.8 \mathrm{~V}$, what will be the threshold voltages of NMOS and PMOS used in CMOS inverter?
(Marks:3)
Q6. The circuit of figure 5 is designed with $(W / L)_{1}=50 / 0.5, I_{D 1}=I_{D 2}=5 \mu \mathrm{~A}$, and $R_{D}=1 \mathrm{k} \Omega$.
(a) Determine $(W / L)_{2}$ such that the contribution of M_{2} to the input-referred thermal noise current (not current squared) is one-fifth of that due to R_{D}.
(b) Now calculate the minimum value of V_{b} to place M_{2} at the edge of the triode region. What is the maximum allowable output voltage swing?
(Marks:6+6)

Figure 5: Q5
Given: NMOS: $\mu_{n} C_{o x}=134 \mu A / V^{2}, \lambda_{n}=0.1 V^{-1}$ for $\mathrm{L}=0.5 \mu m, \mathrm{~V}_{t n}=0.7 \mathrm{~V}$
PMOS: $\mu_{p} C_{o x}=38 \mu A / V^{2}, \lambda_{p}=0.2 V^{-1}$ for $\mathrm{L}=0.5 \mu m, \mathrm{~V}_{t p}=-0.8 \mathrm{~V}$

