EEE F313/ INSTR F313: Analog and Digital VLSI Design I- Semester 2023-2024 Comprehensive Exam (Open Book)

DATE: 15 Dec. 2023, FN (9 -12) am

Total (3+3 questions)

Common data: Use the following common data <u>if not mentioned specifically</u> in the question For $0.25 \mu m$ Technology node -- Lmin=250 nm,

Take Vdd=2.5 V, V_{T0N} =0.4V, V_{T0P} = -0.4V, R_{nmos} = 13kohm/ (W/L), R_{pmos} = 31kohm/ {W/L}, C_{OX} =6 fF/ μ m², λ n=0.1 V⁻¹, λ p= 0.1 V⁻¹, u_n Cox= 90 uA/ V², u_p Cox= 30 uA/ V²

g(inv)=1, p(inv)=1 for standard cmos inverter

- Use long channel approximation and lambda-based design rules unless specially mentioned.
- Use square law current equation unless specifically mentioned. Neglect channel length modulation in current calculation, if not mentioned specifically. The body of all PMOS is tied to V_{DD} while all NMOS is tied to ground unless specially mentioned.

Answer the sub-parts of a question at one place and in the order in which they appear.

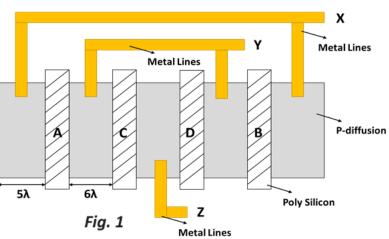
SECTION - A (60 marks total)

Q1. The layout shown in Fig.1 is a pull up network of a digital circuit designed in 180 nm technology node. Dimensions of different parameters are labeled in

the layout itself.

For this layout,

-- area junction capacitance is $C_j = 3 \times 10^{-4}$


$pF/\mu m^2$,

---side wall junction capacitance is $C_{jsw} = 2 \times 10^{-4}$ pF/µm

---- (W/L) = 20.

Answer the following questions :

- a) Calculate the width of each transistor.
- b) Write down the Boolean function represented by the given layout considering, $X = V_{DD}$, Y = Intermediate node, Z = Output node.
- c) Calculate the total source to bulk junction capacitance for the given layout. Here ignore the overlap capacitance.
- d) Calculate the total drain to bulk junction capacitance for the given layout. Here ignore the overlap capacitance.
- e) Sketch & Label the layout of pull down network in the same format as in Fig.1. Clearly mention the source and drain terminals of each transistor in your drawing.

Q2. A CMOS inverter , with minimum sized transistors . Assume $K_n = 0.2mA/V^2$, $K_p = 0.1mA/V^2$ and $Vt_n = |Vt_p| = 0.6V$, $V_{DD} = 3.3V$.

- a) Calculate the inverter gate switching threshold voltage V_M ?
- b) What is the resistance for each transistors using our general expression for MOSFET resistance in saturation?
- c) Determine the rise and fall times of this circuit if the parasitic capacitance at the output is 9fF (use RC delay model)?
- d) Also, calculate the propagation delays for this circuit if a load capacitances of 25fF is added at the output (use RC delay model)?
- e) Now, a ring oscillator (of 11-stages) is created using given CMOS inverter. Determine the frequency of operation of ring oscillator in megahertz (MHz). Hence, compute power delay product for one CMOS inverter stage for given (load + parasitic) capacitance driven by it. Assume dynamic power consumption is dominant.

[20 marks]

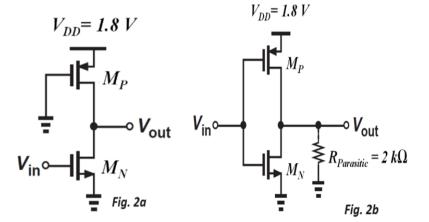
Q3. Answer the following— Ignore the channel length modulation effect in the calculation. Take $\mu_n C_{ox} = 100 \ \mu A/V^2$, $\mu_p C_{ox} = 50 \ \mu A/V^2$, $V_{T0N} = 0.4V$, $V_{T0P} = -0.5 \ V$.

a) Consider the inverter circuit shown in Fig. 2 (a). Identify the topology of the inverter circuit. Hence, determine $\left(\frac{W}{L}\right)_{MN}$ of NMOS Transistor (M_N) such that the low output voltage, Vol \leq 100 mV.

Take,
$$\left(\frac{W}{L}\right)_{Mp} = \frac{3\mu m}{0.18\,\mu m}$$
, for the PMOS

Transistor.

(b). Now, consider the CMOS Inverter circuit shown in *Fig. 2 (b)*


Given
$$\left(\frac{W}{L}\right)_{MN} = \frac{5\mu m}{0.18 \ \mu m}$$
, and $\left(\frac{W}{L}\right)_{Mp} = \frac{11\mu m}{0.18 \ \mu m}$

Without $R_{parasitic}$ in Fig. 2b circuit, determine the value/s of----

- i. Vol (Low output voltage), and Von (High output voltage)
- ii. VIL (Low input voltage) for Vout =Vdd. Also find VIH (High input voltage) for Vout=0V
- iii. (NM)L (Noise Margin Low), and (NM)H (Noise Margin High).
- iv. Hence, sketch and label the Voltage Transfer Characteristics (VTC) for Fig. 2b circuit.

With parasitic resistance, $R_{parasitic}$, present in Fig. 2(b)--

v. Qualitatively explain the effect of $R_{parasitic}$ on the values of Vol (Low output voltage), and Von (High output voltage).

[20 marks]

Write the section name clearly on top of each sheet.

Answer the sub-parts of a question at one place and in the order in which they appear.

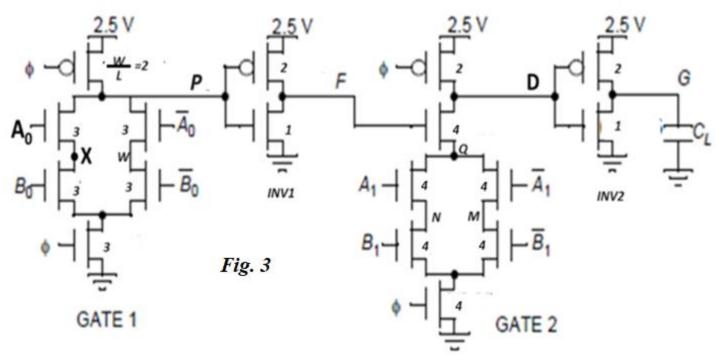
SECTION - B (Total 45 marks)

Neglect body effect

Q4. Consider the circuit shown in Fig. 3. Assume $\mu n = 2 \mu p$. All transistors have length as Lmin= 0.25 um

a) Write down the Boolean expression for G node.

- b) Can we add a CMOS inverter between node *F* and *Gate 2*? Briefly justify your answer.
- c) Assuming the switching threshold of the inverter/s (INV1, INV2) is 1.5 V.


Assume capacitance [Cx= 5fF (at node X), Cp= 30fF (at node P)] for Gate 1,

and [CD=24fF, CQ=15fF, CN=10fF] for Gate2

Now, calculate the output voltage (worst-case values) at node G during the evaluation state

(Φ =LOGIC '1') under the following inputs:

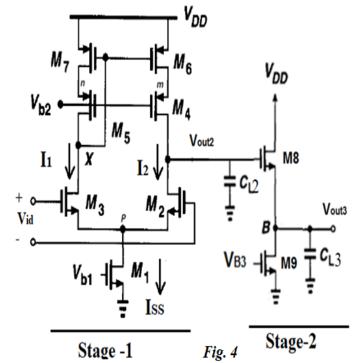
- i. $A_0 = 1, B_0 = 0, A_1 = 1, B_1 = 0.$
- ii. $A_0 = 1, B_0 = 1, A_1 = 1, B_1 = 0.$
- d) What is wrong with the calculated voltage at node G in the later part of part (c)? explain.What is the remedy for this?
- e) Determine the minimum path delay \overline{D} (from input A₀ to G) during the evaluation phase using the logical effort method. Take **H**= **50** for calculation. Assume the reference CMOS inverter is designed with $\mu n = 2 \mu p$ has ginv=1, pinv=1.

[20 marks]

Q5. For the operational amplifier (OPAMP) circuit shown in Fig. 4 the maximum input voltage (V_{id}) for which output enters in slew mode is 0.282 V.

Given: [M4, M5, M6, and M7] are matched, [M2, and M3] are matched)

---**Stage-1** transistors M1 , M2 and M3 have the same overdrive voltage (Vov).


---The total capcitance at V_{out2} i.e. $CL_2\;\;is\;0.5\;pF$ and slew rate is $200\;V/\mu Sec$.

---Stage 2 has a bias current of 50 μ A and an overdrive voltage of 0.2 V.

(use common data given on the first page for calculations)

Now, Calculate the following for the OPAMP:---

- a) If **ICMR is 1.7 V** then find the overdrive voltage (**Vov.**) of the transistors M4, and M6.
- b) Find Vout₂ (DC), V_{out2(max)}, V_{out2(min)}.
- c) Find Differential low-frequency small signal gain intuitively (V_{out3}/V_{id})
- d) Estimate C_{L3} such that the pole at the Vout3 node appears at 12.5 Mrad/sec

[15 marks]

- **Q6.** Consider the circuit shown in **Fig. 5**. Iss is a basic current mirror circuit. Assume, all transistors have the same Vov=0.2V, $\lambda = 0.01V^{-1}$
- > Load capacitance is $C_L = 10 pF$ at output node/s Vout.
- Load capacitance is C_{x,y} at output node/s Vx,y. Given, C₁=C_{x,y}= 0.5 C_L.
- Given [M1, M2, M5, M6], [M7, M8], [M3, M4], [M11, M12, M9, M10] are matched transistor pair/s.
- **a**) Identify the operational amplifier (OPAMP) topology.

b) Determine the value for low-frequency (dc) smallsignal differential voltage gain $\left[\frac{v_{out}}{v_{in}}\right]$ intuitively in dB.

- c) Also, determine values of pole frequencies at node,/sVx , and Vout intuitively.
- d) Hence, estimate the unity gain bandwidth (UGB) of the circuit.
- e) Now, sketch and label the Bode Magnitude (corner) plot (not to the scale, but qualitatively correct)

stage 2

-----Section B ends-----

100uA

stage 1

Fig. 5