Birla Institute of Technology and Science, Pilani

II semester 2017-2018
EEE F341 /INSTR F341 Analog Electronics

Comprehensive Exam (Closed Book)

Date: 07/05/2018
Duration: 100 minutes
M.M.: 60

There are Four questions. Answer all sub-parts of a question at one place.
Note: Assume Op-Amp to be ideal and $V_{\text {sat }}= \pm 12$ V until or unless specifically mentioned.
Q. 1 (a) Design a multirange voltmeter using V-I converter to have $2 \mathrm{M} \Omega$ input impedance and can measure $0-100 \mathrm{mV}, 0-10 \mathrm{~V}$ and $0-100 \mathrm{~V}$. Use PMMC to show the output assume full scale deflection as $100 \mu \mathrm{~A}$ and meter resistance as $10 \mathrm{~K} \Omega$. Extend the design to measure same range AC voltages (RMS) also using only half wave rectifier at suitable place.
Q. 1 (b) Draw transfer characteristic for the circuits (Vsat= $=12 \mathrm{~V}$).

Circuit (a)

Circuit (b)
Q. 2 (a) Find the transfer function at V_{01} and V_{02} for the given circuit and also sketch and label bode magnitude plot for V_{02} assuming $\mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ and $\mathrm{E}=1 \mathrm{~V} .(\mathrm{K}=10)$

Q. 2 (b) Sketch and label V_{0} for the given circuit if given input is applied.

P.T.O.
Q. 3 (a) For the given circuit, find $\mathrm{S}_{\mathrm{v}}, \mathrm{R}_{\mathrm{O}}, \mathrm{V}_{\mathrm{O}}$. Implement current limit for $\mathrm{i}_{\mathrm{L}(\max)}=100 \mathrm{~mA}$. Also find power dissipation through Q1 and zener diode when maximum current is being drawn.
$\left(\beta_{Q 1}=50, \beta_{Q 2}=100, r_{z}=10 \Omega, V_{B E}=0.7 \mathrm{~V}\right.$, ignore r_{x}, r_{Π})
[8M]

Q. 3 (b) Design an astable free running multivibrator using opamp to generate 10 kHz frequency having 40% duty cycle (T_{H} / T). Use $\beta=0.1, \mathrm{C}=10 \mathrm{nF}$ and $\mathrm{V}_{\text {sat }}= \pm 10 \mathrm{~V}$.
Q. 4 (a) i) Sketch and label transfer characteristics for circuits (a) and (b) shown below. ($V_{C E} \approx 0, V_{B E}=0.5 \mathrm{~V}, \beta=40$ for all transistors)

Circuit (a)

Circuit (b)
ii) In circuit (b), assume junction areas of Q1 and Q2 are double of the biasing diodes and biasing diodes require minimum of 1 mA current. Find Quiescent current and quiescent power dissipation of the output transistor.
[3+3=6M]
Q. 4 (b) A tuned intermediate frequency (IF) amplifier for FM is to be designed using two synchronous tuned stages with central frequency of 10 MHz . Find-
i) The required bandwidth of single stage to produce overall bandwidth of 200 KHz .
ii) Use a $3 \mu \mathrm{H}$ inductance and find R, C for each stage.
iii) Suggest a suitable circuit to avoid output-input coupling of tank circuits.
[2+3+1=6M]
Q. 4 (c) An 8-bit ADC uses 6.4 V as reference voltage. Find-
i) Full scale range,
ii) Analog voltage corresponding to 00010111,
iii) Same analog voltage calculated in (ii) is to be converted using dual slope integrator having $R=40 k \Omega$ and $C=0.1 \mu \mathrm{~F}$. If the integrator is connected to analog voltage for 10 ms , then find the peak voltage across integrator output.
[2+2+2=6M]

