BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 EEE F341/INSTR F341 Analog Electronics
 Second Semester 2017-2018
 MID-SEMESTER TEST (Open Book)

Date: 07.03.2018
Note: Assume all op-amp as ideal with $V_{\text {sat }}= \pm 10 \mathrm{~V}$, if not mentioned in the question

1. (a) Design a non-inverting amplifier circuit to have input impedance of $500 \mathrm{k} \Omega$ and a gain of 100 for AC signal having bandwidth of 80 kHz . Assume f_{H} of amplifier is controlled by the dominant pole of the op amp used. Sketch and label the bode magnitude plot of the amplifier (use $500 \mathrm{k} \Omega$ in the feedback path, assume $\mathrm{f}_{3 \mathrm{db}}=100 \mathrm{~Hz}$ at open loop and open loop gain as 10^{5})
[10]
(b) Design an op-amp based differentiator circuit to show output as -5 V when input changes from 0 V to 1 V in $10 \mu \mathrm{sec}$. The circuit should have an input impedance of $1 \mathrm{k} \Omega$ and a gain of 10 . Sketch and label the bode magnitude plot of the circuit. Use bias current compensation in the design. (Assume $f_{3 d b}=10 \mathrm{~Hz}$ at open loop and open loop gain as 10^{5})
2. (a) Design an analog circuit to find the solution of the following differential equation under the given conditions.

$$
\begin{gather*}
2 \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{dt}^{2}}+5 \frac{\mathrm{dV}}{\mathrm{dt}}+\mathrm{V}=4 \\
\text { at } \mathrm{t}=0, \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{dt}^{2}}=2 \mathrm{~V} / \mathrm{s}^{2} \text { and } \frac{\mathrm{dV}}{\mathrm{dt}}=1 \mathrm{~V} / \mathrm{s} \tag{10}
\end{gather*}
$$

(b) Find the expression for V_{0} for the circuit shown in figure 2(b).(Q_{1} and Q_{2} are identical)[10]

Figure. 2(b)
3. (a) Use the given bridge circuit shown in figure 3(a) to show a differential output voltage of 1 V to measure a pressure exerted by putting a weight on the pan containing strain gauge G_{1} to change its resistance by 0.4Ω. Now extend the design to show output through a PMMC meter having internal resistance of $1 \mathrm{k} \Omega$ and full scale deflection (FSD) as $100 \mu \mathrm{~A}$. (Use optimum number of active and passive components only) [10]

Figure. 3(a)
(b) Find the transfer function of the circuit shown in figure 3(b) and identify the type of the filter. Calculate R_{1} and R_{3} of the circuit for Butterworth approximation when $\mathrm{f}_{0}=1 \mathrm{kHz}$. Also sketch the bode magnitude plot of the filter. (consider $\mathrm{C}_{2}=\mathrm{C}_{4}=0.1 \mu \mathrm{~F}$)

Figure. 3(b)
4. (a) Design a Sallen Key second order high pass Butterworth filter shown in figure 4(a) having 3dB frequency as 10 kHz . Use capacitance of 1.59 nF only and $\mathrm{R}_{\mathrm{a}}=10 \mathrm{k} \Omega$.

Figure. 4(a)
(b) For the circuit shown in figure 4(b)

Figure. 4(b)
(i) Identify the type of filter
(ii) Find f_{0}
(iii) Find Q
(iv) Find the complete transfer function of the filter i.e. $\mathrm{V}_{\mathrm{o}}(\mathrm{s}) / \mathrm{V}_{\mathrm{i}}(\mathrm{s})$

